DESIGN AND FABRICATION OF A WIND SIMULATOR FOR RENEWABLE ENERGY TRAINING AND RESEARCH IN NIGERIA
Abstract
Every year, the laboratory offers a variety of teachings, demonstrations, and initiatives related to renewable energy. Different researchers match the needs of the students' work depending on the area of activity. However, little is achieved in Nigerian institutions regarding wind energy research and demonstration. The lack of laboratory facilities for the training of students in wind turbine technology could be one of the reasons. The proposed Framework is a scaled-down version of the available wind turbine power plant. The proposed device would make it possible to work with students at Nigeria Universities, to practice the wind turbine simulator in a working and configurable model. The simulator gives insight into the various components and implications of changes to the operating points of any wind turbine in light of the wind speed and the pitch angle. Students will learn concepts such as the I-V characteristics of a wind energy system, cut-off, cut-in velocity, and power output. It would also enable the user to control the wind speed externally. The proposed wind lab will also be worthwhile for conducting a wind resource evaluation at various sites. Wind resource assessment, like other technical projects, needs planning and coordination. The developed wind simulator lab is beneficial in real-time data monitoring to justify further site-specific investigations, to compare areas to identify relative developmental potential, to get representative data to estimate the performance and/or economic viability of selected wind turbines, and to monitor the potential for wind turbine use because of it cost-effectiveness.
References
Abanihi, V. K., Ezomo, P. I., Aliu, D., Chinedu, P. U., Obari, J. A., & Momoh, M. O. (2020). Complementarity Problem Approach to Economic Power Dispatch of Nigeria Power System. ATBU Journal of Science, Technology and Education, 8(2), 240-249.
Aidonojie, P.A., Ukhurebor, K.E., Oaihimire, I.E., Ngonso, B.F., Egielewa, P.E., Akinsehinde, B.O., Heri, S.K., Darmokoesoemo, H. (2023). Bioenergy Revamping and Complimenting the Global Environmental Legal Framework on the Reduction of Waste Materials: A Facile Review. Heliyon, 9, e12860. DOI: https://doi.org/10.1016/j.heliyon.2023.e12860
Ajewole, T. O., Alawode, K. O., Omoigui, M. O., and Oyekanmi, W. A. (2017). Design Validation of a Laboratory-Scale Wind Turbine Emulator. Cogent Engineering, 4(1). DOI: https://doi.org/10.1080/23311916.2017.1280888
Ajirlo, K. S., Tari, P. H., Gharali, K., & Zandi, M. (2021). Development of a wind turbine simulator to design and test micro HAWTs. Sustainable Energy Technologies and Assessments, 43, 100900. DOI: https://doi.org/10.1016/j.seta.2020.100900
Babatunde, O., Buraimoh, E., Tinuoye, O., Ayegbusi, C., Davidson, I., & Ighravwe, D. E. (2023). Electricity sector assessment in Nigeria: the post-liberation era. Cogent Engineering, 10(1), 2157536. DOI: https://doi.org/10.1080/23311916.2022.2157536
Burton, T., Jenkins, N., Sharpe, D., and Bossanyi, E. (2011). Wind energy handbook. JohnWiley and Sons. DOI: https://doi.org/10.1002/9781119992714
Clausen, P. D., and Wood, D. H. (1999). Research and Development Issues for Small Wind Turbines. Renewable Energy, 16(14), 922927. DOI: https://doi.org/10.1016/S0960-1481(98)00316-4
Chung, J., Sukumaran, S., Hlebnikov, A., Volkova. (2023). A. Design and Development of a Conceptual Solar Energy Laboratory for District Heating Applications. Solar, 3, 504521. DOI: https://doi.org/10.3390/solar3030028
Ecosense. (2014). Wind energy training system. Retrieved October 31, 2020, from ttps://www.ecosenseworld.com/labs/wind-energy labs/wind-energy-training-system
Guo, L., Vengalil, M., Abdul, N.M.M., and Wang, K. (2022). Design and Implementation of Virtual Laboratory for a Microgrid with Renewable Energy Sources. Comput. Appl. Eng. Educ., 30, 349361. DOI: https://doi.org/10.1002/cae.22459
Kayizzi-Mugerwa, S., Shimeles, A., Lusigi, A., and Abidjan, A. M. (2016). Inclusive growth in Africa: Policies, practice, and lessons learnt. Inclusive Growth in Africa: Policies, Practice, and Lessons Learnt. https://doi.org/10.4324/9781315562179 DOI: https://doi.org/10.4324/9781315562179
Kojabadi, H. M., & Chang, L. (2011). Wind turbine simulators. Wind Turbines, 163-174.
Hafner, M., Tagliapietra, S., and de Strasser, L. (2018). Prospects for Renewable Energy in Africa, 4775. https://doi.org/10.1007/978-3 319-92219-5_3
Hassan, A., Ahmad, G., Shafiullah, M., Islam, A., & Alam, M. S. (2025). Review of the Intelligent Frameworks for Pitch Angle Control in Wind Turbines. IEEE Access. DOI: https://doi.org/10.1109/ACCESS.2025.3540367
Hassan, Q., Algburi, S., Sameen, A. Z., Salman, H. M., & Jaszczur, M. (2023). A review of hybrid renewable energy systems: Solar and wind-powered solutions: Challenges, opportunities, and policy implications. Results in engineering, 20, 101621. DOI: https://doi.org/10.1016/j.rineng.2023.101621
Rajendran, S., Diaz, M., Devi, V. K., Jena, D., Travieso, J. C., & Rodriguez, J. (2023). Wind Turbine EmulatorsA Review. Processes, 11(3), 747. DOI: https://doi.org/10.3390/pr11030747
Martin, S., Jung, S., and Vanli, A. (2020). Impact of Near-Future Turbine Technology on the Wind Power Potential of Low Wind Regions. Applied Energy, 272, 115251. DOI: https://doi.org/10.1016/j.apenergy.2020.115251
Ndunagu, J.N., Ukhurebor, K.E., Adesina, A. (2023). Virtual Laboratories for STEM in Nigerian Higher Education: The National Open University of Nigeria Learners Perspective. In: Elmoazen, R., Lpez-Pernas, S., Misiejuk, K., Khalil, M., Wasson, B., Saqr, M (Eds.), Proceedings of the Technology-Enhanced Learning in Laboratories Workshop (TELL 2023), 3393, 38-48.
Ogiesoba-Eguakun, O. C., Yusuf, M. O., Oghama, O. S., Okoh, I., & Abanihi, V. K. (2023). Design of an Industrial Off-Grid Photovoltaic System for the Intensive Care Unit at the University of Benin Teaching Hospital. J Electr Eng Electron Techno 12, 4, 2.
Restrepo, M., Caizares, C.A., Simpson-Porco, J.W., Su, P., Taruc, J. (2021). Optimization- and Rule-based Energy Management Systems at the Canadian Renewable Energy Laboratory microgrid facility. Appl. Energy 2021, 290, 116760. DOI: https://doi.org/10.1016/j.apenergy.2021.116760
Spera, D. A. (1994). Wind turbine technology.
Suleiman Abubakar Ibrahim, Garuba Ismaila Kadiri & Benjamin Okpanachi (2022). Development and Testing of a Horizontal Axis Wind Turbine Simulator. Direct Research Journal of Engineering and Information Technology. Vol. 9 (4), Pp. 107-117, May 2022 ISSN 2354-4155
Ter, K. P., Yakubu, M. S., Momoh, M. O., Abbe, G. E., Agov, T. E., & Alioke, O. C. (2025). Design of an Efficient Power Management System for Solar-Powered UAVS: A Systematic Approach. FUDMA Journal of Sciences, 9(3), 80-87. DOI: https://doi.org/10.33003/fjs-2025-0903-3198
Ukhurebor, K.E., Aigbe, U.O., Onyancha, R.B., UK-Eghonghon, G., Balogun, V.A., Egielewa, P.E., Ngonso, B.F., Imoisi, S.E., Ndunagu, J.N., Kusuma, H.S., Darmokoesoemo, H. (2022). Greenhouse Gases Emission: Perception during the COVID-19 Pandemic. BioMed Research International, 6166276, 1-12. DOI: https://doi.org/10.1155/2022/6166276
Copyright (c) 2025 FUDMA JOURNAL OF SCIENCES

This work is licensed under a Creative Commons Attribution 4.0 International License.
FUDMA Journal of Sciences