IN VITRO ANTIOXIDANT AND ANTIVENOM ACTIVITIES OF AQUEOUS AND CHITOSAN-ENCAPSULATED TAMARINDUS INDICA SEED EXTRACTS AGAINST NAJA NIGRICOLLIS VENOM
Abstract
Snake envenomation is a neglected tropical disease responsible for thousands of mortalities and morbidities annually. Naja nigricollis is one of the venomous snakes of most importance in Nigeria. The enzymatic component of its venom has been associated with devastating complications following envenomation. Hence, this study aimed to evaluate the in vitro antioxidant and antivenom activities of aqueous crude extract and chitosan-encapsulated extract of Tamarindus indica seed. In vitro antioxidant assays; DPPH radical and ferric reducing power assays as well in vitro antivenom activities; phospholipase A2 and proteinases inhibition assays were determined using standard methods. The extracts showed significant DPPH radical-scavenging activities and ferric-reducing powers. However, the encapsulated extract exhibited higher activities with IC50 values of 19.62 µg/mL and 3.67 µg/mL against DPPH radical and FRAP, respectively than crude extract with IC50 values of 33.27 µg/mL and 17.56 µg/mL, respectively. Further, the extracts exerted significant inhibitory effects against the venom enzymes, with the encapsulated extract showing higher inhibitory effects. The IC50 values of the encapsulated extract against the enzymes were 34.58 µg/mL and 45.53 µg/mL against phospholipase A2 and proteinases, respectively, while free extract had IC50 values of 47.42 µg/mL and 62.01 µg/mL, respectively. This is the first study evaluating antivenom potential of chitosan-encapsulated T. indica seed against N. nigricollis. The encapsulated extract showed potential antivenom activities and could serve as a drug lead for the production of herbal therapy against Naja nigricollis venom in order to address antivenom limitations.
References
Detroja, K., Sharma, K., Mishra, S. K., & Georrge, J. J. (2024). Phytochemical profiling of Tamarindus indica: a medicinal plant for snakebite. In Herbal Formulations, Phytochemistry and Pharmacognosy (pp. 413-421). Elsevier.
Faria, W. C. S., da Silva, A. A., Veggi, N., Kawashita, N. H., de Frana Lemes, S. A., de Barros, W. M., ... & Bragagnolo, N. (2020). Acute and subacute oral toxicity assessment of dry encapsulated and non-encapsulated green coffee fruit extracts. Journal of Food and Drug Analysis, 28(2), 337.
Farid, A., Mohamed, A., Ahmed, A., Mehanny, F., & Safwat, G. (2024). Preparation of bee venom-loaded chitosan nanoparticles for treatment of streptozotocin-induced diabetes in male Sprague Dawley rats. Beni-Suef University Journal of Basic and Applied Sciences, 13(1), 97.
Farooq, S., Munir, R., Imtiaz, K., Sehar, S., Khurshid, A., Yunus, N., ... & Fang, N. (2022). Phytochemical investigation and antioxidant activities of tamarind (Tamarindus indica L.). Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 50(4), 12892-12892.
Fernandes, D. A., Gomes, B. A., Mendona, S. C., de Castro Pinheiro, C., Sanchez, E. O. F., Leito, S. G., ... & Leito, G. G. (2024). Alkaloids from Siparuna (Siparunaceae) are predicted as the inhibitors of proteolysis and plasma coagulation caused by snake venom and potentially counteract phospholipase A2 activity of Bothrops jararaca. Journal of Ethnopharmacology, 332, 118349.
Gamulin, E., Mateljak Lukaevi, S., Halassy, B., & Kurtovi, T. (2023). Snake antivenomstoward better understanding of the administration route. Toxins, 15(6), 398.
Gulcin, ., & Alwasel, S. H. (2025). Fe3+ Reducing Power as the Most Common Assay for Understanding the Biological Functions of Antioxidants. Processes, 13(5), 1296.
Gutirrez, J. M. (2021). Snakebite envenomation in Central America: epidemiology, pathophysiology and treatment. In Handbook of Venoms and Toxins of Reptiles (pp. 543-558). CRC Press.
Hansiya, V. S., & Geetha, N. (2021). In vitro anti-venom potential of various solvent based leaf extracts of Andrographis serpyllifolia (Rottler ex Vahl) Wight against Naja naja and Daboia russelli. Journal of ethnopharmacology, 269, 113687.
Ibrahim, Y., Busari, M., Yusuf, R., & Hamzah, R. (2020). In vitro antioxidant activities of ethanol, ethyl acetate and n-hexane extracts of Mangifera indica leaves. Tanzania Journal of Science, 46(3), 628-635.
Jia, Y., Garcia, A., & Reyes, E. (2025). Single-Chain Variable Fragments: Targeting Snake Venom Phospholipase A2 and Serine Protease. Toxins, 17(2), 55.
Kotha, R. R., Tareq, F. S., Yildiz, E., & Luthria, D. L. (2022). Oxidative stress and antioxidantsA critical review on in vitro antioxidant assays. Antioxidants, 11(12), 2388.
Kulabhusan, P. K., Agrawal, S., Jeevanandam, J., & Danquah, M. K. (2020). Nanoformulated herbal drug delivery as efficient antidotes against systemic poisons. Poisonous Plants and Phytochemicals in Drug Discovery, 269-294.
Liaqat, A., Mallhi, T. H., Khan, Y. H., Khokhar, A., Chaman, S., & Ali, M. (2022). Anti-snake venom properties of medicinal plants: a comprehensive systematic review of literature. Brazilian Journal of Pharmaceutical Sciences, 58, e191124.
Mady, M. S., Sobhy, Y., Orabi, A., Sharaky, M., Mina, S. A., & Abo-Zeid, Y. (2024). Preparation and characterization of nano-emulsion formulations of Asparagus Densiflorus root and aerial parts extracts: Evaluation of in-vitro antibacterial and anticancer activities of nano-emulsion versus pure plant extract. Drug Development and Industrial Pharmacy, 50(7), 658-670.
Odewade, J. O., & Odewade, L. O. (2023). Evaluation of antibacterial and antioxidant properties of leaf extract of Chrysophyllum albidum against selected enteric bacterial pathogens. Fudma Journal of Sciences, 7(2), 131-140.
Olorunnibe, M. (2021). Nigeria records 200,000 cases of snake bites, 2,000 deaths annually. Vanguards news, 20 September, p. 64.
Popescu, L., Cojocari, D., Ghendov-Mosanu, A., Lung, I., Soran, M. L., Opri, O., ... & Sturza, R. (2023). The effect of aromatic plant extracts encapsulated in alginate on the bioactivity, textural characteristics and shelf life of yogurt. Antioxidants, 12(4), 893.
Puzari, U., Fernandes, P. A., & Mukherjee, A. K. (2022). Pharmacological re-assessment of traditional medicinal plants-derived inhibitors as antidotes against snakebite envenoming: A critical review. Journal of Ethnopharmacology, 292, 115208.
Salihu, M., Hassan, L. G., Faruq, U. Z., & Yusuf, A. J. (2024). Deciphering the interactions of scopoletin and scopolin from Catunaregam nilotica roots against Naja nigricollis phospholipase A2 enzyme. Toxicon, 243, 107732.
Sampat, G. H., Hiremath, K., Dodakallanavar, J., Patil, V. S., Harish, D. R., Biradar, P., ... & Roy, S. (2023). Unraveling snake venom phospholipase A2: an overview of its structure, pharmacology, and inhibitors. Pharmacological Reports, 75(6), 1454-1473.
Sookying, S., Duangjai, A., Saokaew, S., & Phisalprapa, P. (2022). Botanical aspects, phytochemicals, and toxicity of Tamarindus indica leaf and a systematic review of antioxidant capacities of T. indica leaf extracts. Frontiers in nutrition, 9, 977015.
Swenson, S. D., Stack, S., & Markl, F. S. (2021). Thrombin-like serine proteinases in reptile venoms. In Handbook of venoms and toxins of reptiles (pp. 351-362). CRC Press.
Tariq, S., Umbreen, H., Noreen, R., Petitbois, C., Aftab, K., Alasmary, F. A., ... & Mazid, M. A. (2022). [Retracted] Comparative Analysis of Antioxidants Activity of Indigenously Produced Moringa Oleifera Seeds Extracts. BioMed Research International, 2022(1), 4987929.
Ushanandini, S., Nagaraju, S., Harish Kumar, K., Vedavathi, M., Machiah, D. K., Kemparaju, K., ... & Girish, K. S. (2006). The antisnake venom properties of Tamarindus indica (leguminosae) seed extract. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 20(10), 851-858.
Vidal, J. F., Schwartz, M. F., Garay, A. V., Valadares, N. F., Bueno, R. V., Monteiro, A. C. L., ... & Barbosa, J. A. R. (2024). Exploring the Diversity and Function of Serine Proteases in Toxicofera Reptile Venoms: A Comprehensive Overview. Toxins, 16(10), 428.
Warrell, D. A., & Williams, D. J. (2023). Clinical aspects of snakebite envenoming and its treatment in low-resource settings. The Lancet, 401(10385), 1382-1398.
Copyright (c) 2025 FUDMA JOURNAL OF SCIENCES

This work is licensed under a Creative Commons Attribution 4.0 International License.
FUDMA Journal of Sciences