SIMULATION OF A SECURE COMMUNICATION SCHEME VIA HYBRID SYNCHRONIZATION OF CHAOTIC SYSTEMS WITH MINIMAL CONTINUOUS CHAOS
Abstract
This paper uses the Rossler attractor as a classical oscillator and presents a secure communication approach based on the hybrid synchronization of two identical chaotic systems via Lyapunov direct method. Equilibrium and bifurcation are two examples of fundamental dynamical features that are examined. A secure communication scheme is also presented based on synchronizing evolving chaotic systems with an uncertain parameter. The chaotic transmitter, the modulation, the chaotic receiver and the demodulation make up the communication scheme. The message signal is modulated into the system via the modulation process. Next, a public channel is used to transmit the chaotic signals to the recipient. The receiver end achieves synchronization between the transmitter and the receiver systems; and simultaneously estimates the unknown parameter through the design of the controller and parameter update law. The message signal is retrieved using the suitable demodulation technique and the detected parameter. To show the viability and validity of the described secure communication scheme, numerical simulations are performed.
References
Benkouider, K., Sambas, A., Sulaiman, I. M., Mamat, M., & Nisar, K. S. (2002). Secure communication scheme based on a new hyperchaotic system. Computers, Materials and Continua, 73 (1), 10191035. DOI: https://doi.org/10.32604/cmc.2022.025836
Boccaletti, S., Kurths, J., Osipov, G., Valladares, D., & Zhou, C. (2002). The ynchronization of chaotic systems. Physics Reports, 366 (1), 1-101. DOI: https://doi.org/10.1016/S0370-1573(02)00137-0
Bouraoui, H., & Kemih, K. (2013). Observer-based synchronization of a new hybrid chaotic system and its application to secure communications. Acta Physica Polonica A, 123, 259-262. DOI: https://doi.org/10.12693/APhysPolA.123.259
Cuomo, K. M., & Oppenheim, A. V. (1993). Circuit implementation of synchronized chaos with applications to communications. Phys. Rev. Lett., 71, 65-68. DOI: https://doi.org/10.1103/PhysRevLett.71.65
Gaspard, P., & Bricmont, J. (1999). Chaos, scattering and statistical mechanics. Physics Today, 52(8), 62-64. DOI: https://doi.org/10.1063/1.882789
Gosar, Z. (2011). Chaotic dynamics Rossler system. Researchgate, 10 doi:10.13140/RG.2.2.27897.62564.
Kocarev, L., & Parlitz, U. (1995). General approach for chaotic synchronization with applications to communication. Phys. Rev. Lett., 74, 5028-5031. DOI: https://doi.org/10.1103/PhysRevLett.74.5028
Li, Z., Li, K., Wen, C., & Soh, Y. C. (2003). A new chaotic secure communication system. IEEE Trans. Commun., 51, 1306-1312. DOI: https://doi.org/10.1109/TCOMM.2003.815058
Li, Z., & Xu, D. (2004). A secure communication scheme using projective chaos synchronization. Chaos, Solitons and Fractals, 22(2), 477481. DOI: https://doi.org/10.1016/j.chaos.2004.02.019
Lu, Q. S., Gu, H. G., Yang, Z. Q., Shi, X., Duan, L., & Zheng, Y. (2008). Dynamics of firing patterns, synchronization and resonances in neuronal electrical activities: experiments and analysis. Acta Mechanics Sinica, 24, 593628. DOI: https://doi.org/10.1007/s10409-008-0204-8
Miliou, A. N., Antoniades, I. P., Stavrinides, S. G., & Anagnostopoulos, A. N. (2007). Secure communication by chaotic synchronization: Robustness under noisy conditions. Nonlinear Analysis: Real World Applications, 8, 1003-1012. DOI: https://doi.org/10.1016/j.nonrwa.2006.05.004
Ni-huan, L., & Zhi-hong, H. (2012). A hybrid secure communication method based on the synchronization of hyperchaos systems. International Conference on Communication Systems and Network Technologies, 289-293. DOI: https://doi.org/10.1109/CSNT.2012.70
Olusola, O. I., Oyeleke, K. S., Vincent, U. E., & Njah, A. N. (2020). Secure communication scheme based on synchronization of non-identical hyperchaotic systems. Journal of Applied Nonlinear Dynamics, 9 (2), 273-285. DOI: https://doi.org/10.5890/JAND.2020.06.009
Pecora, L. M., & T. L. Carroll. (1990). Synchronization in chaotic systems. Phys. Rev. Lett., 64, 821-824. DOI: https://doi.org/10.1103/PhysRevLett.64.821
Rai, A., Joshi, M., Upadhyay, K. K., Jyoti, V. K., Shastri, H., & Goyal, S. (2023). Realization of chaotic oscillator and use in secure communication. e-Prime - Advances in Electrical Engineering, Electronics and Energy, 6, 100321. DOI: https://doi.org/10.1016/j.prime.2023.100321
Rosenblum, M. G., Pikovsky, A. S., & Kurths, J. (1996). Phase synchronization of chaotic oscillators. Phys. Rev. Lett., 76, 1804-1807. DOI: https://doi.org/10.1103/PhysRevLett.76.1804
Rossler, O. E. (1976). An equation for continuous chaos. Physics Letters A, 57(5), 397-398. DOI: https://doi.org/10.1016/0375-9601(76)90101-8
Rulkov, N. F., & Tsimring, L. S. (1999). Synchronization methods for communication with chaos over band-limited channels. International Journal of Circuit Theory and Applications, 27(6), 555-567. DOI: https://doi.org/10.1002/(SICI)1097-007X(199911/12)27:6<555::AID-CTA82>3.0.CO;2-X
Samimi, M., Majidi, M. H., & Khorashadizadeh, S. (2020). Secure communication based on chaos synchronization using brain emotional learning. AEU - International Journal of Electronics and Communications, 127, 153424. DOI: https://doi.org/10.1016/j.aeue.2020.153424
Trikha, P., & Jahanzaib, L. (2021). Secure communication: Using double compound combination hybrid synchronization. Proceedings of International Conference on Artificial Intelligence and Applications, 81-91. DOI: https://doi.org/10.1007/978-981-15-4992-2_9
Wu, X., Yao, C., & Shuai, J. (2015). Enhanced multiple vibrational resonances by Na+ and K+ dynamics in a neuron model. Scientific reports, 5, 7684. DOI: https://doi.org/10.1038/srep07684
Yau, H., Pu, Y., & Li, S. (2012). Application of a chaotic synchronization system to secure communication. Information Technology and Control, 41(3), 274-282. DOI: https://doi.org/10.5755/j01.itc.41.3.1137
Yeh, J., & Wu, K. (2008). A simple method to synchronize chaotic systems and its application to secure communications. Mathematical and Computer Modelling, 47(9), 894-902. DOI: https://doi.org/10.1016/j.mcm.2007.06.021
Zaher, A., & Abu-Rezq, A. (2011). On the design of chaos-based secure communication systems. Communications in Nonlinear Science and Numerical Simulation, 16, 3721-3737. DOI: https://doi.org/10.1016/j.cnsns.2010.12.032
Zhao, Y. Li, S. Lian, H., & Wu, Z. (2014). A six-dimensional hyperchaotic system selection and its application in DS-CDMA system. Journal of Communications, 9(11), 859-866. DOI: https://doi.org/10.12720/jcm.9.11.859-866
Zheng, Z., & Hu, G. (2000). Generalized synchronization versus phase synchronization. Phys Rev. E, 62, 7882-7885. DOI: https://doi.org/10.1103/PhysRevE.62.7882
Copyright (c) 2025 FUDMA JOURNAL OF SCIENCES

This work is licensed under a Creative Commons Attribution 4.0 International License.
FUDMA Journal of Sciences