EGG QUALITY ASSESSMENT: A MODEL COMPARISON APPROACH USING BAYESIAN MIXED LOGIT, MIXED LOGIT, LOGISTIC REGRESSION AND MULTINOMIAL REGRESSION MODELS
DOI:
https://doi.org/10.33003/fjs-2025-0905-3656Keywords:
Bayesian mixed logit, Egg quality, Mixed logit ModelAbstract
This study compares the performance of Bayesian mixed logit, mixed logit, logistic regression, and multinomial regression models in analyzing egg quality. The results show that the Bayesian mixed logit model outperforms traditional models, with egg weights, shell thickness, and shape index emerging as significant determinants of egg quality. The Bayesian mixed logit model's superior performance is evident in its lower AIC, DIC, RMSE, and MAE values. These findings have implications for the poultry industry, highlighting the importance of considering complex relationships between egg quality traits.
References
Abd El-Azeem, N. A. , Madkour, M., Hashem, N. M., & Alagawany, M. (2023). Early nutrition as a tool to improve the productive performance of broiler chickens. Worlds Poultry Science Journal, 80(1), 171-185. https://doi.org/10.1080/00439339.2023.2262443
elik S, Sengl T, IncI H, Sgt B, Sengl AY, Kuzu , (2017). Estimation of egg weight from some external and internal quality characteristics in quail by using various data mining algorithms. Indian Journal of Animal Sciences. 87:1524-1530. DOI:10.56093/ijans.v87i12.79871
Dilawar MA, Mun HS, Rathnayake D, (2021). Egg quality parameters, production performance and immunity of laying hens supplemented with plant extracts. Animals; 11(4):975. https://doi.org/10.3390/ani11040975
Jones, D. R., & Musgrove, M. T. (2005). Effects of Extended Storage on Egg Quality Factors. Poultry Science 84(11):1774-7, http://dx.doi.org/10.1093/ps/84.11.1774
Kowalska, E., Kucharska-Gaca, J., Kuniacka, J. et al. Egg quality depending on the diet with different sources of protein and age of the hens. Sci Rep 11, 2638 (2021). https://doi.org/10.1038/s41598-021-82313-1
Orhan H, Eyduran E, Tatliyer A, Saygici H.(2016). Prediction of egg weight from egg quality characteristics via ridge regression and regression tree methods. Revista Brasileira de Zootecnia. 45:380-385. https://doi.org/10.1590/S1806-92902016000700004
Rosa J.O., Venturini G.C., Chud T.C.S., Pires B.C., Buzanskas M.E., Stafuzza N.B., Furquim G.R., Cruz V.A.R., Schmidt G.S., Figueiredo E.A.P., Lima V.F.M.H., Ledur M.C., Munari D.P. (2018): Bayesian inference of genetic parameters for reproductive and performance traits in White Leghorn hens. Czech J. Anim. Sci., 63, 230236. https://doi.org/10.17221/116/2017-CJAS
Shafey TM, Mahmoud AH, Abouhheif MA.(2014). Dealing with multicollinearity in predicting egg components from egg weight and egg dimensin. Italian Journal of Animal Science. 13(4). http://dx.doi.org/10.4081/ijas.2014.3408
Thobela Louis Tyasi1 & 6enol &elik (2024). Investigation of Egg Quality Characteristics Affecting Egg Weight of Lohmann Brown Hen with Data Mining Methods. Poultry Science Journal 12(1): 107-117. https://doi.org/10.22069/psj.2024.21337.1934
Train, K., (2003). Discrete Choice Methods with Simulation. Cambridge University Press, Cambridge, MA.
Yildiz BI, Eskiolu K, zdemir D, Akit M. (2025). Predicting Quail Egg Quality Using Machine Learning Algorithms. Braz. J. Poult. Sci. 27 (1). https://doi.org/10.1590/1806-9061-2024-2037
Yilmaz, A.and1, Eray elik, I. E. (2021). A Bayesian Approach to Binary Logistic Regression Model with Application to OECD Data. Yznc Yl niversitesiFen Bilimleri Enstits Dergisi Cilt 26, 94-101. https://doi.org/10.53433/yyufbed.837533