EGG QUALITY ASSESSMENT: A MODEL COMPARISON APPROACH USING BAYESIAN MIXED LOGIT, MIXED LOGIT, LOGISTIC REGRESSION AND MULTINOMIAL REGRESSION MODELS

  • Christian Chinenye Amalahu University of Agriculture and Environmental Sciences, Umuagwo
  • Joy Chioma Nwabueze Michael Okpara University of Agriculture, Umudike
  • Chibueze Barnabas Ekeadinotu University of Agriculture and Environmental Sciences, Umuagwo
Keywords: Bayesian mixed logit, Egg quality, Mixed logit Model

Abstract

This study compares the performance of Bayesian mixed logit, mixed logit, logistic regression, and multinomial regression models in analyzing egg quality. The results show that the Bayesian mixed logit model outperforms traditional models, with egg weights, shell thickness, and shape index emerging as significant determinants of egg quality. The Bayesian mixed logit model's superior performance is evident in its lower AIC, DIC, RMSE, and MAE values. These findings have implications for the poultry industry, highlighting the importance of considering complex relationships between egg quality traits.

References

Abd El-Azeem, N. A. , Madkour, M., Hashem, N. M., & Alagawany, M. (2023). Early nutrition as a tool to improve the productive performance of broiler chickens. Worlds Poultry Science Journal, 80(1), 171-185. https://doi.org/10.1080/00439339.2023.2262443 DOI: https://doi.org/10.1080/00439339.2023.2262443

elik S, Sengl T, IncI H, Sgt B, Sengl AY, Kuzu , (2017). Estimation of egg weight from some external and internal quality characteristics in quail by using various data mining algorithms. Indian Journal of Animal Sciences. 87:1524-1530. DOI:10.56093/ijans.v87i12.79871 DOI: https://doi.org/10.56093/ijans.v87i12.79871

Dilawar MA, Mun HS, Rathnayake D, (2021). Egg quality parameters, production performance and immunity of laying hens supplemented with plant extracts. Animals; 11(4):975. https://doi.org/10.3390/ani11040975 DOI: https://doi.org/10.3390/ani11040975

Jones, D. R., & Musgrove, M. T. (2005). Effects of Extended Storage on Egg Quality Factors. Poultry Science 84(11):1774-7, http://dx.doi.org/10.1093/ps/84.11.1774 DOI: https://doi.org/10.1093/ps/84.11.1774

Kowalska, E., Kucharska-Gaca, J., Kuniacka, J. et al. Egg quality depending on the diet with different sources of protein and age of the hens. Sci Rep 11, 2638 (2021). https://doi.org/10.1038/s41598-021-82313-1 DOI: https://doi.org/10.1038/s41598-021-82313-1

Orhan H, Eyduran E, Tatliyer A, Saygici H.(2016). Prediction of egg weight from egg quality characteristics via ridge regression and regression tree methods. Revista Brasileira de Zootecnia. 45:380-385. https://doi.org/10.1590/S1806-92902016000700004 DOI: https://doi.org/10.1590/S1806-92902016000700004

Rosa J.O., Venturini G.C., Chud T.C.S., Pires B.C., Buzanskas M.E., Stafuzza N.B., Furquim G.R., Cruz V.A.R., Schmidt G.S., Figueiredo E.A.P., Lima V.F.M.H., Ledur M.C., Munari D.P. (2018): Bayesian inference of genetic parameters for reproductive and performance traits in White Leghorn hens. Czech J. Anim. Sci., 63, 230236. https://doi.org/10.17221/116/2017-CJAS DOI: https://doi.org/10.17221/116/2017-CJAS

Shafey TM, Mahmoud AH, Abouhheif MA.(2014). Dealing with multicollinearity in predicting egg components from egg weight and egg dimensin. Italian Journal of Animal Science. 13(4). http://dx.doi.org/10.4081/ijas.2014.3408 DOI: https://doi.org/10.4081/ijas.2014.3408

Thobela Louis Tyasi1 & 6enol &elik (2024). Investigation of Egg Quality Characteristics Affecting Egg Weight of Lohmann Brown Hen with Data Mining Methods. Poultry Science Journal 12(1): 107-117. https://doi.org/10.22069/psj.2024.21337.1934

Train, K., (2003). Discrete Choice Methods with Simulation. Cambridge University Press, Cambridge, MA. DOI: https://doi.org/10.1017/CBO9780511753930

Yildiz BI, Eskiolu K, zdemir D, Akit M. (2025). Predicting Quail Egg Quality Using Machine Learning Algorithms. Braz. J. Poult. Sci. 27 (1). https://doi.org/10.1590/1806-9061-2024-2037

Yilmaz, A.and1, Eray elik, I. E. (2021). A Bayesian Approach to Binary Logistic Regression Model with Application to OECD Data. Yznc Yl niversitesiFen Bilimleri Enstits Dergisi Cilt 26, 94-101. https://doi.org/10.53433/yyufbed.837533 DOI: https://doi.org/10.53433/yyufbed.837533

Published
2025-05-31
How to Cite
Amalahu, C. C., Nwabueze, J. C., & Ekeadinotu, C. B. (2025). EGG QUALITY ASSESSMENT: A MODEL COMPARISON APPROACH USING BAYESIAN MIXED LOGIT, MIXED LOGIT, LOGISTIC REGRESSION AND MULTINOMIAL REGRESSION MODELS. FUDMA JOURNAL OF SCIENCES, 9(5), 110 - 113. https://doi.org/10.33003/fjs-2025-0905-3656

Most read articles by the same author(s)