EFFECT OF FERTILIZER TYPES ON YIELD AND QUALITY OF NAPIER (Pennisetum purpureum) GRASS ESTABLISHED IN MAKURDI AND HARVESTED AT DIFFERENT GROWTH STAGES DURING THE WET SEASON
DOI:
https://doi.org/10.33003/fjs-2025-0905-3647Keywords:
Napier, Urea, Poultry droppings, Cow dung, Chemical composition, Morphological parametersAbstract
Organic fertilizers may be alternatives to inorganic sources for improved pasture productivity. This research investigated the comparative performance of Pennisetum purpureum pasture as affected by use of organic and inorganic fertilizer types and sampled at different ages during the wet season. The study was a factorial experimental arrangement (4 x 3) laid out as split plot design with six replicates. The two factors were fertilizer type (control-no fertilizer, Urea, Poultry droppings and cow dung) and harvesting age (60, 90 and 120 days). Fertilizer application was at the rate of 300 kg/ha in two and three equal split applications for organic and urea fertilizers, respectively. Data collected were subjected to analysis of variance using SPSS version 23 at 5% probability level. Dry matter yield was not influenced (p>0.05) by all the factors in this experiment. Plant height increased (p<0.05) in pasture fertilized with urea compared to other organic fertilizers, while number of leaves and length reduced (p<0.05) in pasture fertilized with cattle manure only. Tiller diameter was higher (p<0.05) in pastures fertilized with urea compared to organic fertilizer. All chemical parameters measured were not affected (p>0.05) by the different sources of fertilizer used, but crude protein and ash content reduced (p<0.05) with increasing age, while crude fibre, nitrogen free extract, neutral detergent fibre and acid detergent fibre were increased (p<0.05) with increasing age of sampling. This study established that use of poultry droppings compared favourably with urea fertilizer and may be the alternative source of fertilizer for urea.
References
Abass, N. A., Jawad, M. F., Haider, A. J., & Taha, B. A. (2024). Exploring random laser characteristics in core@ shell nano-scatter centers: trends and opportunities. Optical and Quantum Electronics, 56(12), https://doi.org/10.1007/s11082-024-06881-y
Abdulhameed, A. (2024). ZnO-based random lasing and their sensing applications: a mini-review. Applied Nanoscience, 14(10), 985-995. http://dx.doi.org/10.1007/s13204-024-03059-6
Ahmad, A., Dai, H. T., Feng, S., Chen, Z., Mohamed, Z., Khan, A. A., & Mehvish, D. (2025). Random lasing in liquid crystal: Advances, Challenges, and Future Directions. Journal of Materials Chemistry C. https://pubs.rsc.org/en/content/articlelanding/2025/tc/d4tc04871g
Aurelio Sarabia-Alonso, J., Vidales Pasos, E., Belamkar, A., Wagner, B., & Mangolini, L. (2025). Titanium nitride nanoparticles as plasmonic nanothermometers. Optics Express, 33(4), 6758-6770. http://dx.doi.org/10.1364/OE.549815
Carvalho, A. J., Gonalves, I. M., Santos, E. P., Pincheira, P. I., Araujo, P. M., de Oliveira, H. P., & Gomes, A. S. (2025). Dye-doped electrospun fiber-based random lasers: The influence of combined gain media. Optical Materials, 159, 116647. https://doi.org/10.1016/j.optmat.2025.116647
Chen, M. H., Xing, D., Su, V. C., Lee, Y. C., Ho, Y. L., & Delaunay, J. J. (2023). GaN ultraviolet laser based on bound states in the continuum (BIC). Advanced Optical Materials, 11(6), 2201906. https://doi.org/10.1002/adom.202201906
Cheng, M. J., Cao, Y. C., Ren, K. F., Zhang, H., & Guo, L. X. (2024). Generalized Lorenz-Mie theory and simulation software for structured light scattering by particles. Frontiers in Physics, 12, 1354223. https://www.frontiersin.org/journals/physics/articles/10.3389/fphy.2024.1354223/full
Dey, A., Pramanik, A., Karmakar, S., Biswas, S., Karthikeyan, J., Messina, F., & Kumbhakar, P. (2025). Black TiO2 Nanoparticles as Plasmonically Active Scatterers for Random Lasing. ACS Applied Nano Materials. https://pubs.acs.org/doi/10.1021/acsanm.4c07082
Du, P., Li, J., Wang, L., Sun, L., Wang, X., Xu, X., & Tang, J. (2021). Efficient and large-area all vacuum-deposited perovskite light-emitting diodes via spatial confinement. Nature Communications, 12(1), 4751. https://www.nature.com/articles/s41467-021-25093-6
Gangwar, R. K., Pathak, A. K., & Kumar, S. (2023). October). Recent progress in photonic crystal devices and their applications. a review. In Photonics (Vol. 10, No. 11, p. 1199). MDPI. https://www.mdpi.com/2304-6732/10/11/1199
Geerthana, S., Sridarshini, T., Syedakbar, S., Nithya, S., Balaji, V. R., Thirumurugan, A., & Dhanabalan, S. S. (2023). A novel 2D-PhC based ring resonator design with flexible structural defects for CWDM applications. Physica Scripta, 98(10), 105975. https://doi.org/10.1088/1402-4896/acfa43
Han, B., Cheng, Q., Tao, Y., Ma, Y., Liang, H., & Ma, R. .. (2024). Spectral manipulations of random fiber lasers: principles, characteristics, and applications. Laser & Photonics Reviews, 18(7), 2400122. https://onlinelibrary.wiley.com/doi/abs/10.1002/lpor.202400122
Hayat, A., Jin, Y., Iqbal, N., Zhai, T., & He, S. (2024). Lasers Based on Periodic and Quasiperiodic Planar Feedback Cavities: Designs, Principle, and Potential Applications. Progress in Electromagnetics Research, 126. DOI: http://dx.doi.org/10.2528/PIERM24013106
Ivn R. Roa Gonzlez, Bismarck C. Lima, Pablo I. R. Pincheira, Arthur A. Brum, Antnio M. S. Macdo, Giovani L. Vasconcelos, Leonardo de S. Menezes, Ernesto P. Raposo, Anderson S. L. Gomes, Raman Kashyap (2017). Turbulence Hierarchy in a Random Fibre Laser. https://doi.org/10.48550/arXiv.1707.00946
Kadhim, N. M., Vahed, H., & Soofi, H. (2025). Electrically Pumping of SOI Metamaterial Gain-Stripes Plasmonic Nanolaser with DBR Structure. Plasmonics, 1-28. http://dx.doi.org/10.1007/s11468-024-02700-y
Lippi, G. L. (2021). Amplified Spontaneous Emission in Micro-and Nanolasers. Atoms, 9(1), 6. https://www.mdpi.com/2218-2004/9/1/6
Lu, H., Alkhazragi, O., Wang, Y., Almaymoni, N., Yan, W., Gunawan, W. H., & Ooi, B. S. (2024). Low-coherence semiconductor light sources: devices and applications. npj Nanophotonics, 1(1), 9. https://www.nature.com/articles/s44310-024-00005-w
Meglinski, I., Lopushenko, I., Sdobnov, A., & Bykov, A. (2024). Phase preservation of orbital angular momentum of light in multiple scattering environment. Light: Science & Applications, 13(1), 214. https://www.nature.com/articles/s41377-024-01562-7
Miyan, H., Agrahari, R., Gowre, S. K., Jain, P. K., & Mahto, M. (2023). Photonic crystal based ultrafast and highly sensitive refractive index sensor. IEEE Sensors Journal, 23(14), 15563-15569. DOI: http://dx.doi.org/10.1109/JSEN.2023.3283506
Moon, J., Mehta, Y., Gundogdu, K., So, F., & Gu, Q. (2024). Metalhalide perovskite lasers: Cavity formation and emission characteristics. Advanced Materials, 36(20), 2211284. https://doi.org/10.1002/adma.202211284
Moura, A. L., Pincheira, P. I., de Arajo, C. B., & Gomes, A. S. (2023). Feedback Mechanisms and Modes of Random Lasers. In Lvy Statistics and Spin Glass Behavior in Random Lasers. Jenny Stanford Publishing, (pp. 23-50). https://www.taylorfrancis.com/chapters/edit/10.1201/9781003336181-2/feedback-mechanisms-modes-random-lasers-andr%C3%A9-moura-pablo-pincheira-cid-de-ara%C3%BAjo-anderson-gomes
Ni, D., Spth, M., Klmpfl, F., & Hohmann, M. (2022). Properties and applications of random lasers as emerging light sources and optical sensors: a review. Sensors, 23(1), 247. ; https://doi.org/10.3390/s23010247
Padiyakkuth, N., Thomas, S., Antoine, R., & Kalarikkal, N. (2022). Recent progress and prospects of random lasers using advanced materials. Materials Advances, 3(17), 6687-6706. https://pubs.rsc.org/en/content/articlelanding/2022/ma/d2ma00221c
Silva, L. A., Ferreira, F. S., Oliveira, G. S., Moura, A. L., de Oliveira, R. A., & Reyna, A. S. (2024). Exploring disordered light transport in scattering media to optimize random lasers. The Journal of Physical Chemistry C, 128(12), 5321-5329. https://scholar.google.com.my/citations?user=be52EiEAAAAJ&hl=el
Simon, A., Baudis, Q., Wunenburger, R., & Valier-Brasier, T. (2024). Propagation of elastic waves in correlated dispersions of resonant scatterers. The Journal of the Acoustical Society of America, 155(6), 3627-3638. https://doi.org/10.1121/10.0026233
Vasconcelos, H. C., Meirelles, M., zmente, R., & Santos, L. (2025). Structural Analysis of Erbium-Doped Silica-Based Glass-Ceramics Using Anomalous and Small-Angle X-Ray Scattering. Foundations, 5(1), 5. https://doi.org/10.3390/foundations5010005
Wang, Y., Gong, C., Yang, X., Zhu, T., Zhang, K., Rao, Y. J., & Gong, Y. (2023). Photonic Bandgap Fiber Microlaser with DualBand Emission for Integrated Optical Tagging and Sensing. Laser & Photonics Reviews, 17(6), 2200834. DOI: http://dx.doi.org/10.1002/lpor.202200834
Yang, Q., Wu, Y., Chen, J., Lu, M., Wang, X., Zhang, Z., & Chen, L. (2024). Plasmonic nanomaterial-enhanced fluorescence and Raman sensors: Multifunctional platforms and applications. Coordination Chemistry Reviews, 507, 215768. https://doi.org/10.1016/j.ccr.2024.215768
Zhu, H., He, Z., Wang, J., Zhang, W., Pei, C., Ma, R., & Liu, W. (2024). Microcavity complex lasers: From order to disorder. Annalen der Physik, 536(9), 2400112. https://doi.org/10.1002/andp.202400112
Published
How to Cite
Issue
Section
FUDMA Journal of Sciences