CERVICAL CANCER PREDICTION USING ARTIFICIAL NEURAL NETWORKS: A CASE STUDY ON NIGERIAN HEALTHCARE DATA

  • Khadijat Ozavisa Isah Federal University Lokoja
  • Adenike Abisoye Opeyemi Federal University Lokoja
  • Victoria Ifeoluwa Yemi-Peters Federal University Lokoja
  • Adeiza Rufai Malik Federal University Lokoja
Keywords: Artificial Neural Networks, Cervical cancer, Data preprocessing, Genetic algorithms, SMOTE, Nigerian dataset

Abstract

Cervical cancer remains a leading cause of morbidity and mortality in low- and middle-income countries (LMICs), particularly in Nigeria, where limited healthcare resources, inadequate screening programs, and late detection exacerbate the burden. Despite advances in medical science, early detection remains a significant challenge due to socioeconomic barriers and insufficient diagnostic infrastructure. This study addresses these issues by developing a predictive model leveraging Artificial Neural Networks (ANNs) tailored to a Nigerian dataset. The model utilizes advanced data preprocessing techniques, including the Synthetic Minority Oversampling Technique (SMOTE) to address class imbalance and Genetic Algorithms (GA) for feature selection, thereby optimizing the predictive accuracy and efficiency of the ANN. The dataset, consisting of 858 records of demographic, clinical, and lifestyle attributes, was preprocessed to handle missing data and normalize features. After applying SMOTE and GA, the optimized ANN model achieved an accuracy of 87%, a recall of 71%, and an Area Under the Curve (AUC) of 0.85, demonstrating significant improvements over baseline models. These results underscore the potential of machine learning to enhance cervical cancer prediction, particularly in resource-constrained settings like Nigeria. This study highlights the transformative potential of artificial intelligence (AI) in reducing healthcare disparities by providing scalable, localized solutions for early cancer detection. It also emphasizes the importance of integrating domain-specific datasets to improve model relevance and performance. The findings provide a foundation for future research aimed at deploying AI-driven healthcare systems in LMICs, with the ultimate goal of reducing cervical cancer-related mortality and improving public health outcomes.

References

Alassaf, A., Alarbeed, E., Alrasheed, G., Almirdasie, A., Almutairi, S., Al-Hagery, M. A., & Saeed, F. (2024). Genetic algorithms and feature selection for improving the classification performance in healthcare. International Journal of Advanced Computer Science and Applications, 15(3), 737-744. https://doi.org/10.14569/IJACSA.2024.0150375 DOI: https://doi.org/10.14569/IJACSA.2024.0150375

Aljrees, T. (2024). Cervical cancer detection using K-nearest neighbor imputer and stacked ensemble learning model. DIGITAL HEALTH, 9. https://doi.org/10.1177/20552076231203802 DOI: https://doi.org/10.1177/20552076231203802

Bae, S., et al. (2020). The role of deep learning in early cancer detection. IEEE Access, 8, 16850-16857.

Chanudom, I., Tharavichitkul, E., & Laosiritaworn, W. (2024). Prediction of cervical cancer patients' survival period with machine learning techniques. Healthcare Informatics Research, 30(1), 60-72. https://doi.org/10.4258/hir.2024.30.1.60 DOI: https://doi.org/10.4258/hir.2024.30.1.60

Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic minority over-sampling technique. Journal of Artificial Intelligence Research, 16, 321-357. https://doi.org/10.1613/jair.953 DOI: https://doi.org/10.1613/jair.953

Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182-197. https://doi.org/10.1109/4235.996017 DOI: https://doi.org/10.1109/4235.996017

Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., & Thrun, S. (2017). Dermatologist-level classification of skin cancer with deep neural networks. Nature, 542, 115118. https://doi.org/10.1038/nature21056 DOI: https://doi.org/10.1038/nature21056

Ghaheri, A., Shoar, S., Naderan, M., & Hoseini, S. S. (2015). The applications of genetic algorithms in medicine. Oman Medical Journal, 30(6), 406-416. https://doi.org/10.5001/omj.2015.82 DOI: https://doi.org/10.5001/omj.2015.82

He, H., & Garcia, E. (2009). Learning from imbalanced data. IEEE Transactions on Knowledge and Data Engineering, 21(9), 1263-1284. https://doi.org/10.1109/TKDE.2008.239 DOI: https://doi.org/10.1109/TKDE.2008.239

Jiayi, L., Song, E., Ghoneim, A., & Alrashoud, M. (2020). Machine learning for assisting cervical cancer diagnosis: An ensemble approach. Future Generation Computer Systems, 106, 199205. https://doi.org/10.1016/j.future.2019.12.033 DOI: https://doi.org/10.1016/j.future.2019.12.033

Kaur, S., Sharma, L. M., Mishra, V., Goyal, M. G. B., Swasti, S., Talele, A., & Parikh, P. M. (2023). Challenges in cervical cancer prevention: Real-world scenario in India. South Asian Journal of Cancer, 12(1), 9-16. https://doi.org/10.1055/s-0043-1764222 DOI: https://doi.org/10.1055/s-0043-1764222

Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M., van der Laak, J. A. W. M., van Ginneken, B., & Snchez, C. I. (2017). A survey on deep learning in medical image analysis. Medical Image Analysis, 42, 60-88. https://doi.org/10.1016/j.media.2017.07.005 DOI: https://doi.org/10.1016/j.media.2017.07.005

Martha, W. M., Kyama, M. C., & Kibert, P. S. (2019). Improving early diagnosis of cervical cancer lesions using p16INK4a biomarkers on cell blocks from cervical smears. African Journal of Health Sciences, 32(2).

Munshi, R. M. (2024). Novel ensemble learning approach with SVM-imputed ADASYN features for enhanced cervical cancer prediction. PLOS ONE, 19(1), e0296107. https://doi.org/10.1371/journal.pone.0296107 DOI: https://doi.org/10.1371/journal.pone.0296107

Ramos-Polln, R., de la Vega, R., lvarez-Fernndez, A., Lpez-Morales, M., & Cosso, J. A. (2019). Breast cancer classification using machine learning. PLOS ONE, 14(9), e0221581. https://doi.org/10.1371/journal.pone.0221581 DOI: https://doi.org/10.1371/journal.pone.0221581

Ronco, G., Giorgi-Rossi, P., Carozzi, F., & Dunne, M. (2014). Conventional screening in low-resource settings. Cervical Cancer Screening: Past, Present, and Future, 5(2), 75-83. https://doi.org/10.3802/jgo.2014.5.2.75

Rupali, V., Handa, R., & Puri, V. (2020). Feature selection using genetic algorithm for cancer prediction system. In Proceedings of the International Conference on Computational Science and Engineering. https://doi.org/10.1007/978-981-15-5341-7_91 DOI: https://doi.org/10.1007/978-981-15-5341-7_91

World Health Organization. (2022). Cervical cancer statistics and global burden. Retrieved from https://www.who.int/publications/i/item/cervical-cancer-statistics-and-global-burden

Published
2025-05-31
How to Cite
Isah, K. O., Opeyemi, A. A., Yemi-Peters, V. I., & Malik, A. R. (2025). CERVICAL CANCER PREDICTION USING ARTIFICIAL NEURAL NETWORKS: A CASE STUDY ON NIGERIAN HEALTHCARE DATA. FUDMA JOURNAL OF SCIENCES, 9(5), 335 - 339. https://doi.org/10.33003/fjs-2025-0905-3626