STRUCTURAL, ELECTRONIC AND OPTICAL PROPERTIES OF BORON DOPED MONOLAYER GALLIUM ARSENIDE (GaAs) FOR OPTOELECTRONIC APPLICATION: A DFT STUDY
Abstract
This work carried out investigations on the optoelectronic properties of two-dimensional gallium arsenide under some specific conditions. To achieve the aim and objectives of this research, detailed analysis of electronic, structural and optical absorptions is reported. The first principles calculations method within the density functional theory framework was used to study the structural, electronic and optical properties of boron (B) doped monolayer GaAs. The calculated lattice constants with PBE-GGA are 7.9871 Å, and 6.5861 Å for “a” and “c” respectively. The bandgap value of 0.43 eV was obtained for the undoped monolayer GaAs. When 6.25% of B is introduced into monolayer GaAs, the doping effects modified the band gap from 0.43 to 0.29 eV. Also, by introducing 12.50% of B to monolayer GaAs, the band gap value reduced to 0.12 eV. Our findings confirmed that boron doping narrows the energy band gap of monolayer GaAs semiconductor material. The results of optical absorption indicated that 6.25% B doped monolayer GaAs and 12.50% B monolayer GaAs have strong absorption behavior in the visible light frequency, which depicts its suitability for optoelectronic applications such as solar cells. The study revealed that band gap engineering using boron effectively allowed better control of electronic and optical properties of monolayer (2D) GaAs semiconductor, and enhances visible light absorption, making it superior to undoped GaAs for solar cells.
References
Adamu, M. A., Lawal, K., & Saminu, A. (2020). DFT Computation of the Band Structure and Density of State for ZnO Halite Structure using FHI-aims CODE. FUDMA Journal of Sciences, 4(2), Article 2. https://doi.org/10.33003/fjs-2020-0402-231 DOI: https://doi.org/10.33003/fjs-2020-0402-231
Alhassan, S. S., & Albaba, A. L. (2024). Structural, Electronic and Magnetic Properties of Vanadium Doped Delafossite CUGAO2: An Ab Initio Study. FUDMA Journal of Sciences, 8(1), Article 1. https://doi.org/10.33003/fjs-2024-0801-2196 DOI: https://doi.org/10.33003/fjs-2024-0801-2196
Anua, N. N., Ahmed, R., Saeed, M. A., Shaari, A., & Haq, B. U. (2012). DFT investigations of structural and electronic properties of gallium arsenide (GaAs). AIP Conference Proceedings, 1482(1), 6468. https://doi.org/10.1063/1.4757439 DOI: https://doi.org/10.1063/1.4757439
Balc, E., Akku, . ., & Berber, S. (2017). Band gap modification in doped MXene: Sc2CF2. Journal of Materials Chemistry C, 5(24), 59565961. https://doi.org/10.1039/C7TC01765K DOI: https://doi.org/10.1039/C7TC01765K
Cahangirov, S., & Ciraci, S. (2009). First-principles study of GaAs nanowires. Physical Review B, 79(16), 165118. https://doi.org/10.1103/PhysRevB.79.165118 DOI: https://doi.org/10.1103/PhysRevB.79.165118
Cao, L. C. T., Hakim, L., Hsu, S.-H., Cao, L. C. T., Hakim, L., & Hsu, S.-H. (2022). Boron Doping in Next-Generation Materials for Semiconductor Device. In Characteristics and Applications of Boron. IntechOpen. https://doi.org/10.5772/intechopen.106450 DOI: https://doi.org/10.5772/intechopen.106450
Cui, P., & Xue, Y. (2024). Enhancing photovoltaic performance of boron nitride quantum dots: A density functional theory study on carbon doping and amino functionalization. FlatChem, 44, 100625. https://doi.org/10.1016/j.flatc.2024.100625 DOI: https://doi.org/10.1016/j.flatc.2024.100625
De, A., & Pryor, C. E. (2010). Predicted band structures of III-V semiconductors in the wurtzite phase. Physical Review B, 81(15), 155210. https://doi.org/10.1103/PhysRevB.81.155210 DOI: https://doi.org/10.1103/PhysRevB.81.155210
Dridi, Z., Bouhafs, B., & Ruterana, P. (2003). First-principles investigation of lattice constants and bowing parameters in wurtzite AlxGa1xN, InxGa1xN and InxAl1xN alloys. Semiconductor Science and Technology, 18(9), 850. https://doi.org/10.1088/0268-1242/18/9/307 DOI: https://doi.org/10.1088/0268-1242/18/9/307
Giannozzi, P., Andreussi, O., Brumme, T., Bunau, O., Buongiorno Nardelli, M., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Cococcioni, M., Colonna, N., Carnimeo, I., Dal Corso, A., de Gironcoli, S., Delugas, P., DiStasio, R. A., Ferretti, A., Floris, A., Fratesi, G., Baroni, S. (2017). Advanced capabilities for materials modelling with Quantum ESPRESSO. Journal of Physics. Condensed Matter: An Institute of Physics Journal, 29(46), 465901. https://doi.org/10.1088/1361-648X/aa8f79 DOI: https://doi.org/10.1088/1361-648X/aa8f79
Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G. L., Cococcioni, M., Dabo, I., Dal Corso, A., de Gironcoli, S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Wentzcovitch, R. M. (2009). QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. Journal of Physics. Condensed Matter: An Institute of Physics Journal, 21(39), 395502. https://doi.org/10.1088/0953-8984/21/39/395502 DOI: https://doi.org/10.1088/0953-8984/21/39/395502
Glas, F., Ramdani, M. R., Patriarche, G., & Harmand, J.-C. (2013). Predictive modeling of self-catalyzed III-V nanowire growth. Physical Review B, 88(19), 195304. https://doi.org/10.1103/PhysRevB.88.195304 DOI: https://doi.org/10.1103/PhysRevB.88.195304
Ishikawa, T., Urasawa, Y., Shindo, T., Okimoto, Y., Koshihara, S., Tanaka, S., Onda, K., Hiramatsu, T., Nakano, Y., Tanaka, K., & Yamochi, H. (2019). Optical Study of Electronic Structure and Photoinduced Dynamics in the Organic Alloy System [(EDO-TTF)0.89(MeEDO-TTF)0.11]2PF6. Applied Sciences, 9(6), Article 6. https://doi.org/10.3390/app9061174 DOI: https://doi.org/10.3390/app9061174
Itas, Y. S., Alotaibi, N. H., Mohammad, S., Haldhar, R., Kim, S.-C., & Hossain, M. K. (2024). DFT studies on structural, electronic and optical properties of aluminum nitride nanotube doped by different concentrations of boron. Materials Chemistry and Physics, 320, 129429. https://doi.org/10.1016/j.matchemphys.2024.129429 DOI: https://doi.org/10.1016/j.matchemphys.2024.129429
Itas, Y. S., Isah, K. A., Nuhu, A. H., Razali, R., Tata, S., A, N. K., Idris, A. M., Ullah, M. H., & Khandaker, M. U. (2023). The potentials of boron-doped (nitrogen deficient) and nitrogen-doped (boron deficient) BNNT photocatalysts for decontamination of pollutants from water bodies. RSC Advances, 13(34), 2365923668. https://doi.org/10.1039/D3RA03838F DOI: https://doi.org/10.1039/D3RA03838F
Itas, Y. S., Razali, R., Tata, S., Idris, A. M., & Khandaker, M. U. (2023). Studies of the hydrogen energy storage potentials of Fe- and Al-doped silicon carbide nanotubes (SiCNTs) by optical adsorption spectra analysis. Journal of Energy Storage, 72, 108534. https://doi.org/10.1016/j.est.2023.108534 DOI: https://doi.org/10.1016/j.est.2023.108534
Itas, Y. S., Suleiman, A. B., Ndikilar, C. E., Lawal, A., Razali, R., & Danmadami, A. M. (2023). Effects of Ir and B co-doping on H2 adsorption properties of armchair carbon nanotubes using Optical Spectra Analysis for energy storage. Gadau Journal of Pure and Allied Sciences, 2(1), Article 1. https://doi.org/10.54117/gjpas.v2i1.58 DOI: https://doi.org/10.54117/gjpas.v2i1.58
Itas, Y. S., Suleiman, A. B., Ndikilar, C. E., Lawal, A., Razali, R., Ullah, M. H., Osman, H., & Khandaker, M. U. (2023). DFT Studies of the Photocatalytic Properties of MoS2-Doped Boron Nitride Nanotubes for Hydrogen Production. ACS Omega, 8(41), 3863238640. https://doi.org/10.1021/acsomega.3c05907 DOI: https://doi.org/10.1021/acsomega.3c05907
Khanna, V. K. (2017). The temperature-sustaining capability of gallium arsenide electronics. In Extreme-Temperature and Harsh-Environment Electronics: Physics, technology and applications. IOP Publishing. https://doi.org/10.1088/978-0-7503-1155-7ch7 DOI: https://doi.org/10.1088/978-0-7503-1155-7ch7
Kim, Y. (2022). Controllable synthesis and optoelectronic applications of wafer-scale MoS2 films. Materials Research Express, 9(12), 125004. https://doi.org/10.1088/2053-1591/aca7b3 DOI: https://doi.org/10.1088/2053-1591/aca7b3
Lead-free perovskites for flexible optoelectronics. (2024). Materials Today Electronics, 8, 100095. https://doi.org/10.1016/j.mtelec.2024.100095 DOI: https://doi.org/10.1016/j.mtelec.2024.100095
Lin, Y.-S., & Lu, C.-C. (2023). AlGaN/GaN Metal Oxide Semiconductor High-Electron Mobility Transistors with Annealed TiO2 as Passivation and Dielectric Layers. Micromachines, 14(6), Article 6. https://doi.org/10.3390/mi14061183 DOI: https://doi.org/10.3390/mi14061183
Ma, D., Cao, Y., Zhang, J., Deng, Y., Wang, W., & Li, E. (2020). Density functional theory study on the properties of Cu-doped GaAs. Vacuum, 175, 109252. https://doi.org/10.1016/j.vacuum.2020.109252 DOI: https://doi.org/10.1016/j.vacuum.2020.109252
Madu, C. A., & Onwuagba, B. N. (2010). Energy Band Structure Studies Of Zinc-Blende GaAs and InAs. Journal of the Nigerian Association of Mathematical Physics, 16, 5156.
Mishra, H. (2020). Exciton-driven giant nonlinear overtone signals from buckled hexagonal monolayer GaAs. Physical Review B, 101(15). https://doi.org/10.1103/PhysRevB.101.155132 DOI: https://doi.org/10.1103/PhysRevB.101.155132
Mustapha, B., Lawal, A., Aliyu, A. M., & Dalhatu, S. A. (2022). Density Functional Theory studies of structural, electronic and optical properties of Fluorine Doped Magnesium Hydride: DFT Studies of Structural, Electronic and Optical Properties of F-Doped MgH2. Gadau Journal of Pure and Allied Sciences, 1(2), Article 2. https://doi.org/10.54117/gjpas.v1i2.35 DOI: https://doi.org/10.54117/gjpas.v1i2.35
Nowsherwan, G. A., Ali, Q., Ali, U. F., Ahmad, M., Khan, M., & Hussain, S. S. (2024). Advances in Organic Materials for Next-Generation Optoelectronics: Potential and Challenges. Organics, 5(4), Article 4. https://doi.org/10.3390/org5040028 DOI: https://doi.org/10.3390/org5040028
Pramanik, M. B., Rakib, M. A. A., Siddik, M. A., & Bhuiyan, S. (2024). Doping Effects and Relationship between Energy Band Gaps, Impact of Ionization Coefficient and Light Absorption Coefficient in Semiconductors. European Journal of Engineering and Technology Research, 9(1), Article 1. https://doi.org/10.24018/ejeng.2024.9.1.3118 DOI: https://doi.org/10.24018/ejeng.2024.9.1.3118
Raship, N. A., Tawil, S. N. M., Nayan, N., & Ismail, K. (2023). Effect of Al Concentration on Structural, Optical and Electrical Properties of (Gd, Al) Co-Doped ZnO and Its n-ZnO/p-Si (1 0 0) Heterojunction Structures Prepared via Co-Sputtering Method. Materials, 16(6). https://doi.org/10.3390/ma16062392 DOI: https://doi.org/10.3390/ma16062392
Rasmussen, F. A., & Thygesen, K. S. (2015). Computational 2D Materials Database: Electronic Structure of Transition-Metal Dichalcogenides and Oxides. The Journal of Physical Chemistry C, 119(23), 1316913183. https://doi.org/10.1021/acs.jpcc.5b02950 DOI: https://doi.org/10.1021/acs.jpcc.5b02950
Rouzhahong, Y., Wushuer, M., Mamat, M., Wang, Q., & Wang, Q. (2020). First Principles Calculation for Photocatalytic Activity of GaAs Monolayer. Scientific Reports, 10(1), Article 1. https://doi.org/10.1038/s41598-020-66575-9 DOI: https://doi.org/10.1038/s41598-020-66575-9
Saadu Itas, Y., Razali, R., Khandaker, M. U., Tata, S., & Boukhris, I. (2024). Structural, mechanical, electronic and optical properties of Si decorated zinc oxide nanotube photocatalyst for hydrogen evolution via overall water splitting: A DFT study. Physica B: Condensed Matter, 673, 415493. https://doi.org/10.1016/j.physb.2023.415493 DOI: https://doi.org/10.1016/j.physb.2023.415493
Samaki, S., Tchangnwa Nya, F., Dzifack Kenfack, G. M., & Laref, A. (2023). Materials and interfaces properties optimization for high-efficient and more stable RbGeI3 perovskite solar cells: Optoelectrical modelling. Scientific Reports, 13(1), Article 1. https://doi.org/10.1038/s41598-023-42471-w DOI: https://doi.org/10.1038/s41598-023-42471-w
Scarpa, D., Iuliano, M., Cirillo, C., Iovane, P., Borriello, C., Portofino, S., Ponticorvo, E., Galvagno, S., & Sarno, M. (2024). Self-assembled monolayers of reduced graphene oxide for robust 3D-printed supercapacitors. Scientific Reports, 14, 14998. https://doi.org/10.1038/s41598-024-65635-8 DOI: https://doi.org/10.1038/s41598-024-65635-8
Surnev, S., Goniakowski, J., Mohammadi, M., Noguera, C., & Netzer, F. P. (2024). Reduction of a two-dimensional crystalline MoO3 monolayer. Surface Science, 750, 122579. https://doi.org/10.1016/j.susc.2024.122579 DOI: https://doi.org/10.1016/j.susc.2024.122579
Tiwari, S. K., Sahoo, S., Wang, N., & Huczko, A. (2020). Graphene research and their outputs: Status and prospect. Journal of Science: Advanced Materials and Devices, 5(1), 1029. https://doi.org/10.1016/j.jsamd.2020.01.006 DOI: https://doi.org/10.1016/j.jsamd.2020.01.006
Wang, J., Mu, X., Sun, M., & Mu, T. (2019). Optoelectronic properties and applications of graphene-based hybrid nanomaterials and van der Waals heterostructures. Applied Materials Today, 16, 120. https://doi.org/10.1016/j.apmt.2019.03.006 DOI: https://doi.org/10.1016/j.apmt.2019.03.006
Wu, S., Senevirathna, H. L., Weerasinghe, P. V. T., & Wu, P. (2021). Engineering Electronic Structure and Band Alignment of 2D Mg(OH)2 via Anion Doping for Photocatalytic Applications. Materials, 14(10), Article 10. https://doi.org/10.3390/ma14102640 DOI: https://doi.org/10.3390/ma14102640
Yang, J., Liu, K., Chen, X., & Shen, D. (2022). Recent advances in optoelectronic and microelectronic devices based on ultrawide-bandgap semiconductors. Progress in Quantum Electronics, 83, 100397. https://doi.org/10.1016/j.pquantelec.2022.100397 DOI: https://doi.org/10.1016/j.pquantelec.2022.100397
Znidi, F., Morsy, M., & Nizam Uddin, Md. (2024). Recent advances of graphene-based materials in planar perovskite solar cells. Next Nanotechnology, 5, 100061. https://doi.org/10.1016/j.nxnano.2024.100061 DOI: https://doi.org/10.1016/j.nxnano.2024.100061
Zou, W., Lou, B., Kurboniyon, M. S., Buryi, M., Rahimi, F., Srivastava, A. M., Brik, M. G., Wang, J., & Ma, C. (2024). Unraveling Broadband Near-Infrared Luminescence in Cr3+-Doped Ca3Y2Ge3O12 Garnets: Insights from First-Principles Analysis. Materials, 17(7), Article 7. https://doi.org/10.3390/ma17071709 DOI: https://doi.org/10.3390/ma17071709
Copyright (c) 2025 FUDMA JOURNAL OF SCIENCES

This work is licensed under a Creative Commons Attribution 4.0 International License.
FUDMA Journal of Sciences