BROAD-SPECTRUM ANTIBACTERIAL AND ANTIOXIDANT POTENTIALS OF AQUEOUS SYZYGIUM CUMINI (L.) SKEELS LEAF EXTRACT
Abstract
The worldwide increase in antimicrobial resistance and illnesses associated with oxidative stress has heightened the quest for plant-derived alternatives possessing dual therapeutic benefits. In traditional medicine, Syzygium cumini (L.) Skeels is highly valued for its natural bioactive compounds. This research examined the antibacterial and antioxidant properties of its aqueous leaf extract employing standard in vitro techniques. The antibacterial efficacy was assessed against Escherichia coli, Klebsiella oxytoca, Pseudomonas aeruginosa, Staphylococcus aureus, and Proteus mirabilis using a turbidimetric assay, with the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) established through broth dilution and subculturing methods. The extract exhibited concentration-dependent inhibition in all bacterial strains, with MIC values between 60 and 80 mg/mL and MBC values from 80 to 100 mg/mL. MBC/MIC ratios of 1.67 indicate a bactericidal mechanism of action. Antioxidant activity, evaluated using DPPH and hydrogen peroxide (HO) scavenging assays, showed significant radical-neutralizing effects, achieving 80.8% (DPPH) and 85.6% (HO) inhibition at a concentration of 60mg/mL. The extract demonstrated a strong, dose-dependent antioxidant profile, albeit with significantly reduced potency compared to ascorbic acid. These findings underscore the extensive bactericidal and oxidative stress-reducing capabilities of S. cumini aqueous leaf extract, affirming its ethnomedicinal significance. Its dual bioactivity facilitates its use in the creation of natural therapeutics and as a functional component in health-enhancing formulations. This research corresponds with SDG 3 (Good Health and Well-being) and bolsters circular bioeconomy initiatives by advocating for the utilization of safe, plant-derived resources for sustainable therapeutic advancement.
References
Alemu, B., Molla, M. D., Tezera, H., Dekebo, A., & Asmamaw, T. (2024). Phytochemical composition and in vitro antioxidant and antimicrobial activities of Bersama abyssinica F. seed extracts. Scientific Reports, 14(1), 6345. https://doi.org/10.1038/s41598-024-56659-1 DOI: https://doi.org/10.1038/s41598-024-56659-1
Alqahtani, F. A., Almustafa, H. I., Alshehri, R. S., Alanazi, S. O., & Khalifa, A. (2022). Combating Antibiotic Resistance in Bacteria: The Development of Novel Therapeutic Strategies. Journal of Pure and Applied Microbiology, 16(4), 22012224. https://doi.org/10.22207/jpam.16.4.01 DOI: https://doi.org/10.22207/JPAM.16.4.01
Alsadooni, J. F. K., & Khudhair, S. R. (2024). In-Vitro Study on Antioxidant Status of Zinc NPs and Crude Extract of Ayurvedic Herbal Formulation. Adv. Life Sci., 11(2), 338. https://doi.org/10.62940/als.v11i2.1931 DOI: https://doi.org/10.62940/als.v11i2.1931
Arya, O. P., Adhikari, P., Pandey, A., Bhatt, I. D., & Mohanty, K. (2022). Healthpromoting Bioactive Phenolic Compounds in Different Solvent Extracts of Curcuma caesia Roxb. Rhizome from NorthEast India. Journal of Food Processing and Preservation, 46(8). https://doi.org/10.1111/jfpp.16805 DOI: https://doi.org/10.1111/jfpp.16805
ASHA, S., & RADHAMONI, D. R. (2023). Analysis of the Antibacterial Potentials of the Leaf Extracts of Selected Medicinal Plants against Pathogenic Bacterial Strains. Notulae Scientia Biologicae, 15(3), 11575. https://doi.org/10.55779/nsb15311575 DOI: https://doi.org/10.55779/nsb15311575
Devi, H. J., Gnanasekaran, P., Devi, Y. A., Siva, D., & Jayashankar, J. (2024). Investigation of the antimicrobial efficacy and cytotoxicity of a natural disinfectant Syzygium cumini (L.) skeels leaf extract on vero cell lines. Journal of Applied Pharmaceutical Science. https://doi.org/10.7324/JAPS.2024.203410 DOI: https://doi.org/10.7324/JAPS.2024.203410
Devi, R., Singh, S., Moond, M., Beniwal, R., & kumar, S. (2023). Phytochemical Screening and Antioxidant Potential of Syzygium cumini Leaves. Agricultural Science Digest - A Research Journal, Of. https://doi.org/10.18805/ag.d-5628 DOI: https://doi.org/10.18805/ag.D-5628
Fatima, A., Haider, F., Qaiser, J. M. A., Jan, S. U., & Bakhtiar, S. M. (2023). Insilico Analysis of Peptides Isolated from Agaricus bisporus Manifests Potential Antimicrobial Therapeutic Activities. World Journal of Biology and Biotechnology, 8(1), 25. https://doi.org/10.33865/wjb.008.01.0782 DOI: https://doi.org/10.33865/wjb.008.01.0782
Halim, M. A., Kanan, K. A., Nahar, T., Rahman, M. J., Ahmed, K. S., Hossain, H., Mozumder, N. H. M. R., & Ahmed, M. (2022). Metabolic profiling of phenolics of the extracts from the various parts of blackberry plant (Syzygium cumini L.) and their antioxidant activities. LWT, 167, 113813. https://doi.org/10.1016/j.lwt.2022.113813 DOI: https://doi.org/10.1016/j.lwt.2022.113813
Jassim, M. I., Al-Amery, S. M. H., & Jassim, Y. A. (2024). Anti-bacterial activity of Syzygium cumini (L.) Skeels leaves extract.
Kalapriya, B., Muninathan, N., Baskaran, K., & Suresh, A. (2023). Raw Meat and Antibiotic Resistance: A Comprehensive Study on Prevalence of Pathogens in Food Animals. Journal of Advanced Zoology, 44(3), 334344. https://doi.org/10.17762/jaz.v44i3.627 DOI: https://doi.org/10.17762/jaz.v44i3.627
Mishra, R., Kotagale, N., Umekar, M. J., Sahu, R., Maliye, A. N., & Gurav, S. (2021). Development and Validation of Chromatographic Method for the Standardization of Homeopathic Formulation of Syzygium Cumini. Homeopathy. https://doi.org/10.1055/s-0041-1726019 DOI: https://doi.org/10.1055/s-0041-1726019
Olaitan, M. O., Ujowundu, C. O., Nzebude, C. P., Ujowundu, F. N., Ugwu, A. O., Azuoma, F. C., & Nwokocha, G. C. (2024). Organic wastes of Citrus sinensis Peels- a source of eco-friendly and sustainable bioactive compounds for promoting health. Asian Journal of Biochemistry, Genetics and Molecular Biology, 16(2), 2131. https://doi.org/10.9734/ajbgmb/2024/v16i2358 DOI: https://doi.org/10.9734/ajbgmb/2024/v16i2358
Rahman, M. R. T., Fliss, I., & Biron, . (2022). Insights in the Development and Uses of Alternatives to Antibiotic Growth Promoters in Poultry and Swine Production. Antibiotics, 11(6), 766. https://doi.org/10.3390/antibiotics11060766 DOI: https://doi.org/10.3390/antibiotics11060766
Revathi, R., Akash, R., Mahadevi, R., Sengottuvelu, S., Mohanraj, P., Vijayakumar, N., Krishnamoorthy, R., Ahmed, M. Z., Kazmi, S., & Kavitha, R. (2023). Phytochemical characterization, antioxidant and antibacterial activities of crude extracts of Anisomeles malabarica and Coldenia procumbens. Journal of Toxicology and Environmental Health, Part A, 86(17), 614631. https://doi.org/10.1080/15287394.2023.2231484 DOI: https://doi.org/10.1080/15287394.2023.2231484
Salam, Md. A., Al-Amin, Md. Y., Salam, M. T., Pawar, J. S., Akhter, N., Rabaan, A. A., & Alqumber, M. A. A. (2023). Antimicrobial Resistance: A Growing Serious Threat for Global Public Health. Healthcare, 11(13), 1946. https://doi.org/10.3390/healthcare11131946 DOI: https://doi.org/10.3390/healthcare11131946
Tambe, B. D., Pedhekar, P., & Harshali, P. (2021). Phytochemical screening and antibacterial activity of Syzygium cumini (L.)(Myrtaceae) leaves extracts. Asian Journal of Pharmaceutical Research and Development, 9(5), 5054. DOI: https://doi.org/10.22270/ajprd.v9i5.1023
Yusuf, B. O., Ajao, A. T., & Saliu, B. K. (2020). Antibacterial Activity of Essential Oil of Syzygium cumini Leaf against Pathogenic and Spoilage Bacteria Isolated from Cheese. Algerian Journal of Natural Products, 8(1), 758766.
Yusuf-Salihu, B. O., Lateef, A., & Azeez, L. (2024). Phytochemical profiling of wastes from the processing of shea butter (Vitellaria paradoxa) and pharmacological potentials within the paradigm of circular bioeconomy: Emphasizing antioxidant and antidiabetic applications. Cleaner and Circular Bioeconomy, 9, 100107. https://doi.org/10.1016/j.clcb.2024.100107 DOI: https://doi.org/10.1016/j.clcb.2024.100107
Yusuf-Salihu, B. O., Abdulmumini, S. A., Bajepade, T. T., Durosinmi, H. A., Kazeem, M. O., Ajayi, V. A., & Lateef, A. (2025). Novel green synthesis of silver nanoparticles from empty fruit bunch waste: biomedical applications and mechanistic insights. Next Nanotechnology, 7, 100136. https://doi.org/10.1016/j.nxnano.2025.100136 DOI: https://doi.org/10.1016/j.nxnano.2025.100136
Copyright (c) 2025 FUDMA JOURNAL OF SCIENCES

This work is licensed under a Creative Commons Attribution 4.0 International License.
FUDMA Journal of Sciences