LACCASE: A ROBUST ENZYME FOR BIOTECHNOLOGICAL ADVANCEMENT

  • Aisha Abbas Shehu Aminu Kano College of Islamic and Legal Studies
  • Afiya Hamisu Northwest University, Kano
  • Fatima Farouk Umar Yusuf Maitama Sule Federal University of Education, Kano
  • Zainab Muhammad Mahmud Yusuf Maitama Sule Federal University of Education, Kano
Keywords: Laccase, Biotechnology, Biocatalysis, Sustainable technology, Organic synthesis

Abstract

Laccase, a highly adaptable and resilient enzyme, has become a crucial component in various biotechnological applications due to its remarkable catalytic capabilities and ability to interact with a wide range of substrates. This enzyme's versatility has led to its utilization in numerous processes, including the cleanup of pollutants through bioremediation, the production of biofuels, food processing, and innovative biomedical applications. A comprehensive examination of laccase reveals its unique molecular properties, diverse sources, and classification, as well as its significant roles in different industries. Furthermore, recent advancements and potential future directions in laccase research highlight its vast potential to propel sustainable biotechnological innovations. By harnessing the power of laccase, researchers and industries can develop more efficient and environmentally friendly solutions. As a vital enzyme in modern biotechnology, laccase is poised to transform various fields and contribute to a more sustainable future. Its potential applications are vast, and continued research and development are expected to unlock new opportunities for this enzyme. With its impressive capabilities and broad range of applications, laccase is an enzyme that holds significant promise for driving positive change in various industries and shaping a greener future.

References

Adamian, Y., Lonappan, L., Alokpa, K., Agathos, S.N. and Cabana, H. (2021). Recent developments in the immobilization of laccase on carbonaceous supports for environmental applications. A critical review. https://doi.org/10.3389/fbioe.2021.778239 DOI: https://doi.org/10.3389/fbioe.2021.778239

Aggelis, G., Iconomou, D., Christou, M., Bokas, D., Kotzailias, S., Christou, G., Tsagou, V. and Papanikolaou, S. (2003). Water research 37,3897 DOI: https://doi.org/10.1016/S0043-1354(03)00313-0

Alcalde, M. (2007). Laccases: Biological functions, molecular structure and industrial application. In: Polaina J, MacCabe, A, editors. Industrial enzymes: structure, function and applications. Dordreclit: Springer; 2007. P.461-76. ISBN 978-1-4020-5377-1. DOI: https://doi.org/10.1007/1-4020-5377-0_26

Alcalde, M., Ferrer, M., Plou, F.J. and Ballesteros, A. (2006). Environmental biocatalysis: from remediation with enzymes to novel green processes. Trends Biotechnol 2006, 24: 281-287 DOI: https://doi.org/10.1016/j.tibtech.2006.04.002

Areskogh, D. and Henriksson, G. (2011). Immobilization of laccase for polymerization of commercial lignosulphonates, process Biochem.46 (2011)1071-1075 DOI: https://doi.org/10.1016/j.procbio.2011.01.024

Arregui, L., Ayala, M., Gomez-Gil, X., Gutierrez-Soto, G., Carlos E.H., Herrara, M., Levin L., Rojo-Dominguez, A., Romero-Martinez, D., Saparrat, M.C., Trujillo-Roldan M. and Valdez-Cruz, N.A (2019). Laccases: Structure, function, and potential application in water bioremediation. https://doi.org/10.1186/s12934-019-1248-0 DOI: https://doi.org/10.1186/s12934-019-1248-0

Ba, S., Arsenault A., Hassani, T., Jones, J.P. and Cabana, H. (2013). Laccase immobilization and solubilization: from fundamentals to applications for the elimination of emerging contaminants in wastewater treatment. Critical Reviews in Biotechnologt 33(4):404-418. https://doi.org/10.3109/07388551.2012.725390 DOI: https://doi.org/10.3109/07388551.2012.725390

Baldrian, P. (2006). Fungal laccases Occurance and properties. FEMS microbiol Rev. 30:215-242. DOI: https://doi.org/10.1111/j.1574-4976.2005.00010.x

Bebic, J., Banjanac, K., Corovic, M., Milivojevic, A., Simovic, M., Marinkovic, A. and Bezbradica, D. (2020). Immobilization of laccase from myceliophthora thermophila on functionalized silica nanoparticles: optimization and application in lindane degradation. Chin. J. chem. Eng.28 (2020)1136-1144 DOI: https://doi.org/10.1016/j.cjche.2019.12.025

Bilal, M., Adeel, M., Rasheed, T., Zhao Y. and Iqbal, H.M. (2019). Emerging contaminants of high concern and their enzyme-assisted biodegradation-a review. Environ Int 124:336-353 https://doi.org./10.1016/j.envint.2019.01.011 DOI: https://doi.org/10.1016/j.envint.2019.01.011

Camarero, S., Ibarra, D., Martinez, M.J., and Martinez, A.T. (2007). Lignin-derived compounds as efficient laccase mediators for decolorization of different types of recalcitrant dyes. Applied and Environmental Microbiology, 73(15), 5247-5255.

Chen, X.D., Li, G., Li, L., Luo, N., Ullah, Q., Wei, Huang, F. (2015). Facile fabrication of gold nanoparticle on Zein ultrafine fibres and their application for catechol biosensor. Appl. Surf. Sci. 328 (2015) 444-452. https://doi.org/10.1016/J.APSUSC.2014.12.070 DOI: https://doi.org/10.1016/j.apsusc.2014.12.070

Couto, S.R. and Toca Herrera, J.L. (2006). Industrial and biotechnological applications of laccases: A review. Biotechnology Advances 24(2006) 500-513. https://doi.org/10.1016/j.biotechadv.2006.04.003 DOI: https://doi.org/10.1016/j.biotechadv.2006.04.003

Dana, M., Khaniki, G.B., Mokhtarieh A.A. and Davarpanah S.J. (2017). Biotechnological and industrial applications of laccase: A Review

De Salas, F. and Camarero, S. (2021). Fungal laccases as biocatalysts for wide range applications. DOI: https://doi.org/10.1016/B978-0-12-809633-8.21087-X

Du, M.H., Yan, Z.W., Hao Y.J., Yan, Z.T., Si, F.L., Chen, B., and Qiao, L. (2017). Suppression of laccase 2 severely impairs cuticle tanning and pathogen resistance during the pupil metamorphosis of Anopheles sinensis (Diptera:Culicidae). Parasites vectors. 2017; 10(1):171. https://doi.org/10.1186/s13071-017-2118-4 DOI: https://doi.org/10.1186/s13071-017-2118-4

Ehlers, G.A. and Rose P.D. (2005). Bioresource Technology 96,1264 DOI: https://doi.org/10.1016/j.biortech.2004.10.015

Giardina, P., Faraco, V., Pezzella, C., Piscitelli, A., Vanhulle, S., and Sannia, G. (2010). Laccases: a never-ending story. Cellular and Molecular Life Sciences, 67(3), 369-385. DOI: https://doi.org/10.1007/s00018-009-0169-1

Gupta, G., Rajendran, V. and Atanassou, P. (2003). Laccase biosensor on monolayer-modified gold electrode. 15(1): 1577-1583. DOI: https://doi.org/10.1002/elan.200302724

Jeon, J-R., Kim, E.J., Murugesan, K., et al., (2010). Laccase-catalyzed polymeric dye synthesis from plant-derived phenols for potential application in hair dyeing: enzymatic colourations driven by homo-or hetero-polymer synthesis. MicrobBiotechnol, 3:24-335 DOI: https://doi.org/10.1111/j.1751-7915.2009.00153.x

Jeyabalan, J., Veluchamy, A., Priyan, V.V., Kumar, A., Chandrasekar, R. and Narayanasamy, S. (2023) A review on the laccase assisted decolourization of dyes: recent trends and research progress. https://doi.org/10.1016/j.jtice.2023.105081 DOI: https://doi.org/10.1016/j.jtice.2023.105081

Kameshwar, A.K. and Qin W. (2017). Qualitative and quantitative methods for isolation and characterization of lignin-modifying enzymes secreted by microorganisms. Biornerg. Res 10,248-266. https://doi.org/10.1007/s12255-016-9784-5 DOI: https://doi.org/10.1007/s12155-016-9784-5

Kudanga, T. and Le.Roes-Hill M. (2014). Laccase applications in biofuels production: current status and future prospects. Appl Microbiol biotechnol a8:6525-6542 DOI: https://doi.org/10.1007/s00253-014-5810-8

Kunamneni, A., Ballesteros, A., Plou, F.J. and Alcalde, M. (2007). Fungal laccase- a versatile enzyme for biotechnological applications.

Kyomuhimbo, H.D. and Brink H.G. (2023) Application of immobilization strategies of the copper-centred laccase enzyme; a review https://doi.org/10.1016/j.heliyon.2023.e13156 DOI: https://doi.org/10.1016/j.heliyon.2023.e13156

Li, H., Hou, J., Duan, L. et al (2017). Graphene oxide-enzyme hybrid nanoflowers for efficient water soluble dye removal. Journal of Hazardous materials, 338, (2017), 93-101. DOI: https://doi.org/10.1016/j.jhazmat.2017.05.014

Lv, L., Tian, S., Ahmed, I., Pavase, T.R., Lin, H., Xu, L., et al. (2019). Effect of laccase-catalyzed cross-linking on the structure and allergenicity of Paralichthysolivaceus parvalbumin mediated by propylgallate. Food Chemistry, 297. https://doi.org/10.1016/j.foodchem.2019.124972. Article 124972. DOI: https://doi.org/10.1016/j.foodchem.2019.124972

Madhavi. V., and Lele, S.S. (2009). Laccase: properties and applications. BioResources 4, 1694-1717. DOI: https://doi.org/10.15376/biores.4.4.1694-1717

Maestre-Reyna, M., Liu, W.C., Jeng, W.Y., Lee, C.C., Hsu, C.A., Wen. T.N., et al. (2015). Structural and functional roles of glycosylation in fungal laccase from Lentinussp. Plos One 10(01): 20601 DOI: https://doi.org/10.1371/journal.pone.0120601

Maryan, A.S. and Montazer, M. (2009). The effect of cellulase and laccase enzymes on denim color. J. color sci Technol, 3(1): 53-64.

Montazer, M. and Maryan, A.S. (2008). Application of laccase with cellulases on denim for clean effluent and repeatable biowashing. J Appl Polymsci, 110: 3121-3129 DOI: https://doi.org/10.1002/app.28920

Nadaroglu, H., Mosber, G., Gungor, A.A., Adiguzel, G., and Adiguzel, A. (2019). Biodegradation of some azo dyes from wastewater with laccase from weissellaviridescens LB37 immobilized on magnetic chitosan nanoparticles. Journal of Water Process Engineering, 31.100866 https://doi.org/10.1016/J.JWPE.2019.100866 DOI: https://doi.org/10.1016/j.jwpe.2019.100866

Osma, J.F., Toca-Herrara, J.L. and Rodriguez-Couto, S. (2010). Uses of laccases in the food industry. Enzymeres 2010: 918761 DOI: https://doi.org/10.4061/2010/918761

Pannu, J.S. and Kapoor R.K. (2014). Microbial laccase: A mini-review on their production, purification and applications. Int j pharmarch, 3(1): 528-536

Qayum, A., Hussain, M., Li, J., Shi, R., Li, T., et al. (2021). Gelling, microstructure and water-holding properties of alpha-lactalbumin emulsion gel: impact of combined ultrasound pretreatment and laccase crosslinking. Food hydrocolloids, 110. https://doi.org/10.1016/j.foodhyd.2020.106122. Article 106122. DOI: https://doi.org/10.1016/j.foodhyd.2020.106122

Rodriguez, E., Pickard, M.A., Vazquez-Duhalt, R. (1999). Industrial Dye Decolorization by laccases from Ligninolytic fungi. CurrMicrobiol 38: 27-32. DOI: https://doi.org/10.1007/PL00006767

Sacher, F., Ehmann, M., Gabriel, S., Graf, C. and Brauch, H-J (2008). Pharmaceutical residues in the river Rhine. J. Environ Monit 10:664. https://doi.org/10.1039/b800701b DOI: https://doi.org/10.1039/b800701b

Sahay, R. (2021) Synthetic applications of laccase and its catalytic potentials https://dx.doi.org/10.22161/ijaers.86.12 DOI: https://doi.org/10.22161/ijaers.86.12

Salvachua, D., Prieto, A., Vaquero, M.E., Martinez, A.T., and Martinez, M.J. (2019). Sugar recovery from the enzymatic hydrolysis of biomass using a synthetic chelator and a metal-tolerant laccase. Bioresource Technology 28, 121546.

Schneider, W. DH., Fontana, RC., Mendonca, S., de Siqueira, FG., Dillion, A.J.P. and Camassola, M. (2018). High level production of laccases and peroxidases from the newly isolated white-rot basidiomycete MarasmiellusPalmivorus VE 111 in a stirred-tank bioreactor in response to different carbon and nitrogen sources. Process. Biochem. DOI: https://doi.org/10.1016/j.procbio.2018.03.005

Shleeva, M.O., Kaprelyants, A.S., and Berdichevsky, M.V. (2019). The impact of laccase on lignin degradation and bioconversion of lignocellulosic biomass. Biochemistry (Moscow), 84(11), 1268-1287.

Shoa, B., Liu, Z., Zeng, G., Liu, Y., Yang, X., Zhou, C., Chen, M., Liu, Y., Jiang, Y. and Yan, M. (2018). Immobilization of laccase on hollow mesoporous carbon nanospheres: note-worthy immobilization, excellent stability and efficacious for antibiotics contaminants removal. Journal of hazardous materials, 362: 318-326. https://doi.org/10.1016/j.jhazmat.2018.08.069 DOI: https://doi.org/10.1016/j.jhazmat.2018.08.069

Shraddha, Shekher, R., Sehgal, S., Kamthania, M. and Kumar, A. (2011). https://doi.org/10.4061/2011/217861 DOI: https://doi.org/10.4061/2011/217861

Sidy Ba and Kumar V.V. (2017). Recent developments in the use of tyrosinase and laccase in environmental applications. Critical Reviews in Biotechnology. https://dx.doi.org/10.1080/07388551.2016.1261081 DOI: https://doi.org/10.1080/07388551.2016.1261081

Singh, D. and Gupta N. (2020). Microbial laccase: a robust enzyme and its industrial application. Biologia. https://doi.org/10.2478/s11756-019-00414-9 DOI: https://doi.org/10.2478/s11756-019-00414-9

Singh, G., Bhalla, A., Kaur, P., and Capalash, N. (2011). Laccase from prokaryotes: a new source for an old enzyme. Reviews in Environmental Science and Biotechnology, 10(4), 309-326.

Singh, G., Bhalla, A., Kaur, P., Capalash N. and Sharma, P. (2011). Laccase from prokaryotes: a new source for an old enzyme. Rev Environ SciBiotechnol. https://doi.org/10.1007/s11157-011-9257-4. DOI: https://doi.org/10.1007/s11157-011-9257-4

Sondhi, S., Chopra, N.K., Kumar, A. and Gupta, N. (2023). Laccase: A green solution for environmental problems. Adv. Environ. Eng. Res. l4, https://doi.org/10.21926/aeer.2302030 DOI: https://doi.org/10.21926/aeer.2302030

Surwase, S., Patil, S.A., Srinivas, S. and Jadhav, J.P. (2016). Interaction of small molecules with fungal laccase: a surface plasmon resonance based study. Enzyme MicrobTechnol 82:110-114 https://doi.org/10.1016/j.enzmictec.2015.09.002 DOI: https://doi.org/10.1016/j.enzmictec.2015.09.002

Tang, H., Zhang, W., Geng, P., Wang, Q., Jin, L., Wu, Z. et al (2006). A new amperometric method for rapid detection of Escherichia Coli density using a self- assembled monolayer-based bienzyme biosensor. Anal. Chim. Acta 562: 190-196. DOI: https://doi.org/10.1016/j.aca.2006.01.061

Tobimatsu, Y., and Schuetz M. (2019). Lignin polymerization: how do plants manage the chemistry so well? CurrOpinBiotechnol 2019; 56:7581. https://doi.org/10.1016/j.copbio.2018.10.001 DOI: https://doi.org/10.1016/j.copbio.2018.10.001

Wang, J., Feng J., Jia W., Chang S., Li, S., and Li, Y. (2015) Plant improvement. https://doi.org/10.1186/s13068-015-0331-y DOI: https://doi.org/10.1186/s13068-015-0331-y

Wang, J., Lu, L. and Feng, F. (2017). Combined strategies for improving production of a thermo-alkali stable laccase in PichiaPastoris. Electron. J. biotechnol, 28, 7-13. DOI: https://doi.org/10.1016/j.ejbt.2017.04.002

Wellington, K.W. (2011). Application of laccases in organic synthesis: A review ISBN 978-1-61324-877-5 CSIR Biosciences, enzyme technologies group, Modderfontien 1645, South Africa

Woldesenbet, F., Virk, A., Gupta, N. and Sharma, P. (2013). Bio bleaching of mixed wood kraft pulp with alkalophilic bacterial xylanase, mannanase and laccase-mediator system. J microbiolBiotechnol. 3:32-41

Yoshida, H. (1883). Chemistry of lacquer (urishi) part 1. J Chem Soc. 43:472-86. https://doi.org/10.1039/ct8834399472 DOI: https://doi.org/10.1039/CT8834300472

Zerva, A., Simic, S., Topakas, E. and Nikodinovic-Runic, J. (2019). Applications of microbial laccases: Patent Review of the past decade (2009-2019) DOI: https://doi.org/10.3390/catal9121023

Published
2025-06-30
How to Cite
Shehu , A. A., Hamisu, A., Umar, F. F., & Mahmud, Z. M. (2025). LACCASE: A ROBUST ENZYME FOR BIOTECHNOLOGICAL ADVANCEMENT. FUDMA JOURNAL OF SCIENCES, 9(6), 73 - 79. https://doi.org/10.33003/fjs-2025-0906-3534