ASSESSMENT OF TOXIC ELEMENT CONTAMINATION AND RISK IN SEDIMENTS NEAR A FERTILIZER PLANT IN KANKARA, NORTHWESTERN NIGERIA

  • Isyaku Saifudeen Federal University Dutsin-Ma
  • Adamu N. Baba-Kutigi Federal University Dutsin-Ma
  • Emmanuel Joseph Federal University Dutsin-Ma
  • Adamu Idris Federal University Dutsin-Ma
Keywords: Toxic element, Fertilizer, Concentration, Potential health risk, Sensitization

Abstract

Potentially toxic elements (PTEs) are metallic chemicals with densities that are higher than that of water, its sediments are mainly from two sources, i.e., natural sources such as rock weathering and anthropogenic activities such as mining and agriculture. The composition and concentrations toxic element in sediments in the local fertilizer blending plant at Kankara Local Government Area, Katsina State. Determination of the concentration and elemental composition levels of sediment samples have been simplified by the use of reliable, multi-elemental techniques such as the instrumental neutron activation analysis (INAA) combined with high-resolution germanium gamma-ray spectrometry. A total of twenty-two (22) elements were determined from the six(6) samples of sediments collected. Five (5) of these elements are As, Co, Cr, V and Zn. The range and average values of the concentration are As (1.43 – 5.03mg/kg, 3.70mg/kg), Co (2.3 – 30.9mg/kg; 14.80 mg/kg), Cr (15.6 – 106 mg/kg, 56.18mg/kg), V (23 – 241mg/kg; 116.63 mg/kg) and Zn (24.5 – 130mg/kg, 78.93mg/kg). This study shows that the potentially toxic elements are not yet at elevated stage, except Co and V which were both above the permissible limit, while others are gradually reaching elevation and may be at a high risk of disease caused from toxic element exposure. Potential health risk is associated with accumulation of potentially toxic metals in tissues including Parkinson disease, arsenicosis, acrodynia, selenoises, Alzheimer’s disease, hair loss, mental imbalance and abortion in women around in the areas. Alternative fertilizer blending techniques and sensitization on the potential health risk are highly...

References

Adriano, D. C. (Ed) (1992). Biogeochemistry of Trace Metals.Lewis Publisher, Boca Raton, FL.

Agency for Toxic Substances and Disease Registry (ATSDR) (2004) Toxicological profile for Cobalt.U.S. Department of Health and Human Services, Public Health Service, Division of Toxicology 1600, Atlanta, GA 30333

Agency for Toxic Substances and Disease Registry (ATSDR) (2007) U.S. Department of Health and Human Services, Public Health Service, Division of Toxicology 1600, Atlanta, GA 30333

Ali, H.; Khan, E.; Ilahi, I. Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation. J. Chem. 2019, 2019, 6730305. DOI: https://doi.org/10.1155/2019/6730305

Allen, S. E. (Ed.) (1974). Chemical Analysis of Ecological Materials.Blackwell Scientific Publications, Oxford.

America Public Health Association (1995) Standard methods for the examination of water and waste water, 20th edn. American Public Health Association, Washington DC

Andreev G, Simenov V (1990) Distribution and correlation of elements in waters, suspensions, sediments and marine organisms from the Black Sea. Toxicol Environ Chem 28:19 DOI: https://doi.org/10.1080/02772249009357586

Andrews S, Sutherland RA (2004) Cu, Pb and Zn contamination in Nuuanu watershed, Oahu, Hawaii. Sci Total Environ 324(13):173182 DOI: https://doi.org/10.1016/j.scitotenv.2003.10.032

Antoniadis, V., Shaheen, S. M., Levizou, E., Shahid, M., Niazi, N. K., Vithanage, M., ... & Rinklebe, J. (2019). A critical prospective analysis of the potential toxicity of trace element regulation limits in soils worldwide: Are they protective concerning health risk assessment?-A review. Environment international, 127, 819-847. DOI: https://doi.org/10.1016/j.envint.2019.03.039

Arajo TO, Freitas-Silva L, Santana BVN, et al. 2014. Tolerance to iron accumulation and its effects on mineral composition and growth of two grass species. Environmental Science and Pollutiton Research 21: 2777-2784. DOI: https://doi.org/10.1007/s11356-013-2201-0

Balk J, Pilon M. 2011. Ancient and essential: the assembly of iron-sulfur clusters in plants. Trends in Plant Science 16: 218-226. DOI: https://doi.org/10.1016/j.tplants.2010.12.006

Barbera R, Farre R, Mesado D (1991) Determination of cadmium, cobalt, copper, iron, lead, manganese, nickel and zinc in diets: development of a method. Nahrung 35(7):683687 DOI: https://doi.org/10.1002/food.19910350702

Barceloux DG (1999) Zinc. Clin Toxicol 37(2):279292 DOI: https://doi.org/10.1081/CLT-100102426

Chen, H.; Teng, Y.; Lu, S.; Wang, Y.; Wang, J. Contamination features and health risk of soil heavy metals in China. Sci. Total. Environ. 2015, 512513, 143153.

DHHS (1995) Report to Congress on workers home contamination study conducted under the workers family protection act (29 U.S.C. 671a). Cincinnati, OH: U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health. Pub no. 95-123. PB96192000

Emenike, E.C.; Ogunniyi, S.; Ighalo, J.O.; Iwuozor, K.O.; Okoro, H.K.; Adeniyi, A.G. Delonix regia biochar potential in removing phenol from industrial wastewater. Bioresour. Technol. Rep. 2022, 19, 101195. DOI: https://doi.org/10.1016/j.biteb.2022.101195

Engwa GA, Ferdinand PU, Nwalo FN, Unachukwu MN (2018) Mechanism and effects of heavy metal toxicity in humans, poisoning in the modern worldnew tricks for an old dog? Ozgur Karcioglu and Banu Arslan, IntechOpen. https://doi.org/10.5772/intechopen.82511 DOI: https://doi.org/10.5772/intechopen.82511

Environmental Protection Agency (EPA) (2005) Emissions of arsenic compounds. In: Technology Transfer Network. National Air Toxics Assessment. Pollutant-Specific Data Tables. US

Epstein, E. (1972). Mineral Nutrition of Plants: Principles and Perspectives, John Wiley & Sons, New York, NY, USA

FAO (2006) Arsenic contamination of irrigation water, soil and crops in Bangladesh: risk implications for sustainable agriculture and food safety in Asia. In: Heikens A (ed) Regional office for Asia and The Pacific, Rap publication 2006/20. Food and Agriculture Organization of the United Nation, Bangkok, Thailand

FAO/WHO (2011) Joint FAO/WHO Food Standards Programme Codex Committee on Contaminants in Foods. 64-89.

Fergusson IE (1990) The heavy elements chemistry, environmental impact and health effects. Pergamon press, New York

Ferousi C, Lindhoud S, Baymann F, Kartal B, Jetten MS, Reimann J. 2017. Iron assimilation and utilization in anaerobic ammonium oxidizing bacteria. Current Opinion in Chemical Biology 37: 129-136. DOI: https://doi.org/10.1016/j.cbpa.2017.03.009

Fiedler, H. J. & Rijsler, H. J. (Eds) (1992). Spurenelemente in der Umwelt. Ferdinand EnkeVerlag, Stuttgart.

Freitas, M. C., & Martinho, E. (1989). Determination of trace elements in reference materials by the k0-standardization method (INAA). Talanta, 36(4), 527-531. DOI: https://doi.org/10.1016/0039-9140(89)80242-5

Freitas, M. C., Pacheco, A. M. G., Dionsio, I., Sarmento, S., Baptista, M. S., Vasconcelos, M. T. S. D., & Cabral, J. P. (2006). Multianalytical determination of trace elements in atmospheric biomonitors by k0-INAA, ICP-MS and AAS. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 564(2), 733-742. DOI: https://doi.org/10.1016/j.nima.2006.04.008

Fuhrer GJ (1986) Extractable cadmium, mercury, copper, lead, and zinc in the lower Columbia River estuary, Oregon and Washington. In: U.S. Geological Survey water-resources investigations report. Portland

Glascock, M. D. (2011). An Overview of Neutron Activation Analysis. University of Missouri Research Reactor (MURR)

Grillet L, Mari S, Schmidt W. 2014. Iron in seeds - loading pathways and subcellular localization. Frontiers in Plant Science 4: 535. DOI: https://doi.org/10.3389/fpls.2013.00535

Gundersen P, Steinnes E (2003) Influence of pH and TOC concentration on Cu, Zn, Cd, and Al speciation in rivers. Water Res 37:307318 DOI: https://doi.org/10.1016/S0043-1354(02)00284-1

Hang, X., Wang, H., Zhou, J., Ma, C., Du, C., & Chen, X. (2009). Risk assessment of potentially toxic element pollution in soils and rice (Oryza sativa) in a typical area of the Yangtze River Delta. Environmental pollution, 157(8-9), 2542-2549. DOI: https://doi.org/10.1016/j.envpol.2009.03.002

Hevesy, G. & Levi, H. (1936). The Action of Neutrons on the Rare Earth Elements, Det. Kgl. DanskeVidenskabernesSelskab, Mathematisk-fysiskeMeddelelser XIV, 5 (1936a) 334.

Hevesy, G. & Levi, H. (1938). Artificial Activity of Hafnium and some other Elements, Det. Kgl. DanskeVidenskabernesSelskab, Mathematisk-fysiskeMeddelelser XV, (1938b) 1121.

Hodges, S. C. (1995). Soil Fertility Basics, Soil. Science Extension North Carolina State University Certified Crop Advisor Training.

IAEA (1990). International Atomic Energy IAEA-TEC DOC 564: Practical Aspect of Operating a neutron activation analysis laboratory, IAEA, Vienna, Autria, pp. 9-18, 36-37, 50-95.

IARC (1980). Arsenic and arsenic compounds. In: IARC monographs on the evaluation of the carcinogenic risk of chemicals to humans, Vol 23. Some metals and metallic compounds. International Agency for Research on Cancer, Lyon, pp 39141

IARC (2004). Overall evaluations of carcinogenicity to humans: as evaluated in IARC monographs volumes 182 (at total of 900 agents, mixtures and exposures). International Agency for Research on Cancer, Lyon

Ibaez TB, Santos LFM, Lapaz AM, et al. 2021. Sulfur modulates yield and storage proteins in soybean grains. Scientia Agricola 78: e20190020. DOI: https://doi.org/10.1590/1678-992x-2019-0020

IITA (1979). Selected Methods for Soil and Plant. Manual Series No:1, Ibadan,pp:2-50.

Influences of liming on vertisol properties and yields of the field crops. Cereal Res. Commun., 34, 517-520 DOI: https://doi.org/10.1556/CRC.34.2006.1.129

Inuwa M, F.W. Abdurrahman, U. A Birnin Yauri and Ibrahim, S. A. (2007). Analytical determination of some trace metals in soils around the major industrial areas of north western Nigeria, trends in applied sciences research,2(6)515-521 DOI: https://doi.org/10.3923/tasr.2007.515.521

Iyengar, G.V. (1989). Element Analysis of Biological Systems, Vol. 1, Biomedical, Environmental, Conceptional and Methodological Aspects of Trace Elements.CRC Press, Boca Raton, FL. Kloke, A. and K.

Jardine PM, Fendorf SE, Mayes MA (1999) Fate and transport of hexavalent chromium in undisturbed heterogeneous soil. Environ Sci Technol 33(17):29392944 DOI: https://doi.org/10.1021/es981211v

Jonah, S.A.; Balogun, G.I,; Umar, I.M.; Mayaki, M.C. (2005). Neutron Spectrum parameters in irradiation channels of the Nigeria Research Reactor 1 (NIRR 1) for k0 NAA standardization. J. Radioanal. Nucl.Chem..266(1). 83 88. DOI: https://doi.org/10.1007/s10967-005-0873-8

Jonah, S.A.; Balogun, G.I,; Umar, I.M.; Oladipo, M.O.A.; Adeyemo D.J. (2006). Standardization of Nigeria Research Reactor 1 (NIRR 1) irradiation and counting facilities for instrumental neutron activation analysis. Applied Radiation and Isotopes 64. 818 - 822 DOI: https://doi.org/10.1016/j.apradiso.2006.01.012

Jucoski GO, Cambraia J, Ribeiro C, Oliveira JA, Paula SO, Oliva MA. 2013. Impact of iron toxicity on oxidative metabolism in young Eugenia uniflora L. plants. Acta Physiologiae Plantarum 35: 1645-1657. DOI: https://doi.org/10.1007/s11738-012-1207-4

Kabata-Pendias A, Pendis H (2001) Trace elements in soils and plants, 3rd edn. CRC Press, London, pp 3845 DOI: https://doi.org/10.1201/9781420039900

Kaya C, Ashraf M, Alyemeni MN, Ahmad P. 2020. Nitrate reductase rather than nitric oxide synthase activity is involved in 24-epibrassinolide-induced nitric oxide synthesis to improve tolerance to iron deficiency in strawberry (Fragaria annassa) by up-regulating the ascorbate-glutathione cycle. Plant Physiology and Biochemistry 151: 486-499. DOI: https://doi.org/10.1016/j.plaphy.2020.04.002

Khan, S., Cao, Q., Zheng, Y. M., Huang, Y. Z. and Zhu, Y. G. (2008). Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China, Environmental Pollution, vol. 152, no. 3, pp. 686692, 2008. DOI: https://doi.org/10.1016/j.envpol.2007.06.056

Kimbrough DE, Cohen Y, Winer AM (1999) A critical assessment of chromium in the environment. Crit Rev Environ Sci 29(1):146

Kimbrough DE, Cohen Y, Winer AM (1999) A critical assessment of chromium in the environment. Crit Rev Environ Sci 29(1):146 DOI: https://doi.org/10.1080/10643389991259164

Krohling CA, Eutrpio FJ, Bertolazi AA, et al. 2016. Ecophysiology of iron homeostasis in plants. Soil Science and Plant Nutrition 62: 39-47. DOI: https://doi.org/10.1080/00380768.2015.1123116

Lei GJ, Zhu XF, Wang ZW, Dong F, Dong NY, Zheng SJ. 2014. Abscisic acid alleviates iron deficiency by promoting root iron reutilization and transport from root to shoot in Arabidopsis. Plant, Cell & Environment 37: 852-863. DOI: https://doi.org/10.1111/pce.12203

Levi, H. (1986). Semicentennial Lecture, held on June 23, 1986 at the opening of the 7th International Conference Modern Trends in Activation Analysis, Copenhagen, Denmark.

Lieth, H. & Markert, B. (1988). Aufstellung und Auswertungiikosystemarer Element-Konzentrations-Kataster. Springer- Verlag, Berlin, pp. 193. DOI: https://doi.org/10.1007/978-3-642-73366-6

Liyu, W. (2004). WINSPAN 2004, A Multi-Purpose Gamma-Ray Spectrum Analysis Software.CIAE, Beijing, China.

Lu, C.A.; Zhang, J.F.; Jiang, H.M.; Yang, J.C.; Zhang, J.T.; Wang, J.Z.; Shan, H.X. Assessment of soil contamination with Cd, Pb and Zn and source identification in the area around the Huludao zinc plant. J. Hazard. Mater. 2010, 182, 743748. [CrossRef] [PubMed] DOI: https://doi.org/10.1016/j.jhazmat.2010.06.097

MacDonald, D.D., Ingersoll, C.G., Berger, T.A., 2000. Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch. Environ. Contam. Toxicol. 39, 2031. http://dx.doi.org/10.1007/s002440010075. DOI: https://doi.org/10.1007/s002440010075

Majerle, M. (2006). Experimental studies and simulations of spallation neutron production on a thick lead target. Journal of Physics: Conference Series, 41:331(339). DOI: https://doi.org/10.1088/1742-6596/41/1/036

Mangani, G., Berloni, A., Bellucci, F., Tatno, F., Maione, M., 2005. Evaluation of the pollutant content in road runoff first flush waters. Water Air Soil Pollut. 160 (14), 213228. http://dx.doi.org/10.1007/s11270-005-2887-9. DOI: https://doi.org/10.1007/s11270-005-2887-9

Marion, E. & Fowler, H. (1960). Neutron Dosimetry, IAEA-TECH REPORT 1, 111-152.

Martnez-Santos, M., Probst, A., Garca-Garca, J., Ruiz-Romera, E., 2015. Influence of anthropogenic inputs and a high-magnitude flood event on metal contamination pattern in surface bottom sediments from the Deba River urban catchment. Sci. Total Environ. 514, 1025. http://dx.doi.org/10.1016/j.scitotenv.2015.01.078. DOI: https://doi.org/10.1016/j.scitotenv.2015.01.078

Mazumder G (2008) Chronic arsenic toxicity & human health. Indian J Med Res 128(4):436447

Mclaughlin, M.J., Parker, D.R., Clarke, J.M., 1999. Metals and micronutrients-food safety issues. Field Crop Res. 60 (1), 143163. http://dx.doi.org/10.1016/S0378-4290(98) 00137-3. DOI: https://doi.org/10.1016/S0378-4290(98)00137-3

Mikkonen, H.G., Graaff, R., Collins, R.N., Dasika, R., Wallis, C.J., Howard, D.L., Reichman, S.M., 2019. Immobilisation of geogenic arsenic and vanadium in iron-rich sediments and iron stone deposits. Sci. Total Environ. 654, 1072e1081. DOI: https://doi.org/10.1016/j.scitotenv.2018.10.427

Mller V, Chavez-Capilla T, Feldmann J, Mestrot A (2022) Increasing temperature and flooding enhance arsenic release and biotransformations in Swiss soils. Sci Total Environ 838:156049. https://doi.org/10.1016/j.scitotenv.2022.156049 DOI: https://doi.org/10.1016/j.scitotenv.2022.156049

Nizami, G.; Rehman, S. Assessment of heavy metals and their effects on quality of water of rivers of Uttar Pradesh, India: A review. J. Environ. Chem. Toxicol. 2018, 2, 22.

NAS/NRC (1999). Arsenic in drinking water. NAS/NRC (National Academy of Sciences/National Research Council).Washington, DC. pp. 251-257(1999)

Okoro, H.K.; Ige, J.O.; Iyiola, O.A.; Ngila, J.C. Fractional profile, mobility patterns and correlations of heavy metals in estuary sediments from olonkoro river, in tedecatachment of western region, Nigeria. Environ. Nanotechnol. Monit. Manag. 2017, 8, 5362. DOI: https://doi.org/10.1016/j.enmm.2017.04.003

Perez-Benito, J. F., (2006). Effects of chromium (VI) and vanadium (V) on the lifespan of fish. J. Trace Elem. Med. Biol., 20: 161170. DOI: https://doi.org/10.1016/j.jtemb.2006.04.001

Qiu, Y.W. Bioaccumulation of heavy metals both in wild and mariculture food chains in Daya Bay, South China. Estuar. Coast. Shelf Sci. 2015, 163, 714. DOI: https://doi.org/10.1016/j.ecss.2015.05.036

Rahaman MS, Rahman MM, Mise N, Sikder T, Ichihara G, Uddin MK, Kurasaki M, Ichihara S (2021) Environmental arsenic exposure and its contribution to human diseases, heavyity mechanism and management. Environ Pollut 289:117940. https://doi.org/10.1016/j.envpol.2021.117940 DOI: https://doi.org/10.1016/j.envpol.2021.117940

Rahman MA, Hasegawa H, Rahman MM, Rahman MA, Miah MAM (2007) Accumulation of arsenic in tissues of rice plant (Oryza sativa L.) and its distribution infractions of rice grain. Chemosphere 69:942948. https://doi.org/10.1016/j.chemosphere.2007.05.044 DOI: https://doi.org/10.1016/j.chemosphere.2007.05.044

Rahman MA, Rahman A, Khan MZK, Renzaho AMN (2018) Human health risks and socio-economic perspectives of arsenic exposure in Bangladesh: a scoping review. Ecoheavyol Environ Saf 150:335343. https://doi.org/10.1016/j.ecoenv.2017.12.032 DOI: https://doi.org/10.1016/j.ecoenv.2017.12.032

Rakovic, H. (1970). Applied Physics. 31, 1675

Rinklebe, J., Antoniadis, V., Shaheen, S. M., Rosche, O., & Altermann, M. (2019). Health risk assessment of potentially toxic elements in soils along the Central Elbe River, Germany. Environment international, 126, 76-88. DOI: https://doi.org/10.1016/j.envint.2019.02.011

Robson M (2003) Methodologies for assessing exposures to metals: human host factors. Ecotoxicol Environ Saf 56:104109 DOI: https://doi.org/10.1016/S0147-6513(03)00054-X

Rokonuzzaman M, Li WC, Wu C, Ye ZH (2022) Human health impact due to arsenic contaminated rice and vegetables consumption in naturally arsenic endemic regions. Environ Pollut 308:119712. https://doi.org/10.1016/j.envpol.2022.119712 DOI: https://doi.org/10.1016/j.envpol.2022.119712

Roychowdhury T (2008) Impact of sedimentary arsenic through irrigated groundwater on soil, plant, crops and human continuum from Bengal delta: special reference to raw and cooked rice. Food Chem Toxicol 46:28562864. https://doi.org/10.1016/j.fct.2008.05.019 DOI: https://doi.org/10.1016/j.fct.2008.05.019

Saleh FY, Parkerton TF, Lewis RV (1989) Kinetics of chromium transformations in the environment. Sci Total Environ 86:2541 DOI: https://doi.org/10.1016/0048-9697(89)90190-3

Salmanighabeshi, S., Palomo-Marn, M.R., Bernalte, E., Rueda-Holgado, F., Mir-Rodrguez, C., Fadic-Ruiz, X., Vidal-Cortez, V., Cereceda-Balic, F., Pinilla-Gil, E., 2015. Long-term assessment of ecological risk from deposition of elemental pollutants in the vicinity of the industrial area of Puchuncav-Ventanas, central Chile. Sci. Total Environ. 527, 335343. http://dx.doi.org/10.1016/j.scitotenv.2015.05.010. DOI: https://doi.org/10.1016/j.scitotenv.2015.05.010

Shaji E, Santosh M, Sarath KV, Prakash P, Deepchand V, Divya BV (2021) Arsenic contamination of groundwater: a global synopsis with focus on the Indian Peninsula. Geosci Front 12:101079. https://doi.org/10.1016/j.gsf.2020.08.015 DOI: https://doi.org/10.1016/j.gsf.2020.08.015

Siddappa, K.G. and Balakrishna, K. M. (1996). Neutron and Gamma Activation analyses Using Microtron Facility. Trends in NDE Science and Technology.Proc.14th World Conference on Non-Destructive Testing, New Delhi, 8 13 December.Ashgate Publ. Co. 2: 389-92.

Simonits, A., de Corte, F., Hoste, J. (1975).Single Comparator Methods in Reactor Neutron Activation Analysis, J. Radioanal. Chem. 24:3146. DOI: https://doi.org/10.1007/BF02514380

Siqueira-Silva AI, Silva LC, Azevedo AA, Oliva MA. 2012. Iron plaque formation and morphoanatomy of roots from species of restinga subjected to excess iron. Ecotoxicology and Environmental Safety 78: 265-275. DOI: https://doi.org/10.1016/j.ecoenv.2011.11.030

Smith AH, Lingas EO, Rahman M (2000) Contamination of drinking-water by arsenic in Bangladesh: a public health emergency. Bull World Health Organ 78(9):10931103

Sutherland, R.A., 2000. Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environ. Geol. 39 (6), 611627. http://dx.doi.org/10.1007/s002540050473. DOI: https://doi.org/10.1007/s002540050473

Tucker, R. M. (1999). Essential Plant Nutrients: Their presence in North Carolina soils and role in plant nutrition. NCDA & CS.

Tisdale, S. L. W. L.Nelson, J.D. Beaton, and J. L.Havlin, (1993). Soil Fertility and Fertilizer, Prentice Hall, Upper Saddle River, NJ, USA, 5th edition.

Tth, G.; Hermann, T.; Szatmri, G.; Psztor, L. Maps of heavy metals in the soils of the European Union and proposed priority areas for detailed assessment. Sci. Total Environ. 2016, 565, 10541062. DOI: https://doi.org/10.1016/j.scitotenv.2016.05.115

USEPA (United States Environmental Protection Agency), Guidelines for Carcinogen Risk Assessment, EPA/630/P-03/001F, Risk Assessment Forum, Washington, DC, USA, 2005.

Vahter M (2008) Health effects of early life exposure to arsenic. Basic Clin Pharmacol Heavyol 102:204211. https://doi.org/10.1111/j.1742-7843.2007.00168.x DOI: https://doi.org/10.1111/j.1742-7843.2007.00168.x

Watt, J.A.J., Burke, I.T., Edwards, R.A., Malcolm, H.M., Mayes, W.M., Olszewska, J.P., Pan, G., Graham, M.C., Heal, K.V., Rose, N.L., Turner, S.D., Spears, B.M., 2018.

Williams US (1992). A Textbook of Biology, Third Edition

Wilkinson SR, Welch RM, Mayland HF, Grunes DL. (1990). Magnesium in plants: Uptake, distribution, function, and utilization by man and animals. Metal Ions in Biological Systems 26: 3356.

World Health Organisation (WHO) (3rd ed.), Guidelines for Drinking-water Quality, 1, Geneva (2008), p. 1459

World Health Organization (WHO) (2011) Guidelines for drinking water quality, 3rd edn. World Health Organization, Geneva

Zhang, B., Zhao, H., Shi, C., Zhou, S., Ni, J., 2009. Simultaneous removal of sulfide and organics with vanadium(V) reduction in microbial fuel cells. J. Chem. Technol. Biotechnol. 84, 1780e1786. DOI: https://doi.org/10.1002/jctb.2244

Zhang, Z., Li, J., Mamat, Z., Ye, Q., 2016. Sources identification and pollution evaluation of heavy metals in the surface sediments of Bortala River, Northwest China. Ecotoxicol. nviron. Saf. 126, 94101. http://dx.doi.org/10.1016/j.ecoenv.2015.12.025. DOI: https://doi.org/10.1016/j.ecoenv.2015.12.025

Published
2025-05-03
How to Cite
Saifudeen, I., Baba-Kutigi, A. N., Joseph, E., & Idris, A. (2025). ASSESSMENT OF TOXIC ELEMENT CONTAMINATION AND RISK IN SEDIMENTS NEAR A FERTILIZER PLANT IN KANKARA, NORTHWESTERN NIGERIA. FUDMA JOURNAL OF SCIENCES, 9, 264 - 279. https://doi.org/10.33003/fjs-2025-09(AHBSI)-3527