PHYSICOCHEMICAL PROPERTIES OF REFINED SOYBEAN OIL AND DEODORIZER DISTILLATE AS BIODIESEL FEEDSTOCKS

  • Blessing Ayomide Olafimihan Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology, P.M.B. 4000, Ogbomoso, Oyo State, Nigeria.
  • Akintomiwa Olumide Esan Ladoke Akintola University of Technology, Ogbomoso
  • Kayode Taiwo Ishola Ladoke Akintola University of Technology, Ogbomoso
  • Monsurat Olabisi Atunnise Shittu Department of Pure and Applied Chemistry, Faculty of Pure and Applied Science, Ladoke Akintola University of Technology, Oyo State, Nigeria
  • Aminat Adebisi Adetayo-Balogun Department of Pure and Applied Chemistry, Faculty of Pure and Applied Science, Ladoke Akintola University of Technology, Oyo State, Nigeria
Keywords: Biodiesel, Feedstock, Free fatty acid, Refined soybean oil, Soybean oil deodorizer distillate

Abstract

Biodiesel is an eco-friendly fuel that possesses the right qualities as a renewable source of energy including excellent lubricity, high flash point and biodegradability and this mainly depends on the raw material used. Hence, the physicochemical properties of refined soybean oil and soybean oil deodorizer distillate were determined to compare the most suitable for biodiesel production. The physicochemical parameters of the two oils which include: acid, iodine, saponification, free fatty acid and peroxide value, were determined by the official standard method of the Association of Official Analytical Chemists. The results revealed free fatty acid, peroxide, acid, iodine, and saponification content of soybean oil deodorizer distillate to be: 47.70±1.00 mg KOH/g, 248.55±0.89 meq O2/kg, 115.69±0.85 mg KOH/g, 5.58±0.51 g I2/100 g, and 64.95±0.65 mg KOH/g. While that of refined soybean oil showed the content to be 0.63±0.11 mg KOH/g, 4.08±1.02 meq O2/kg, 10.33±1.53 mg KOH/g, 11.58±0.38 g I2/100 g, and 34.70±1.00 mg KOH/g. These results indicate the free fatty acid, peroxide, acid and saponification content of soybean oil deodorizer distillate to be higher compared to refined soybean oil which suggests that it may require further pretreatment prior to transesterification. Although no transesterification reactions were conducted in this research, the high FFA Content and the origin of soybean oil deodorizer distillate as a byproduct of oil refining suggest its potential as a cost-effective and sustainable feedstock for biodiesel production, particularly within a waste valorization framework.

References

Akbar, E., Yaakob, Z., Kamarudin, S. K., Ismail, M., & Salimon, J. (2009). Characteristic and composition of Jatropha curcas oil seed from Malaysia and its potential as biodiesel feedstock feedstock. European J. of Scientific Research, 29(3), 396-403.

Akram, F., Haq, I. U., Raja, S. I., Mir, A. S., Qureshi, S. S., Aqeel, A., & Shah, F. I. (2022). Current trends in biodiesel production technologies and future progressions: A possible displacement of the petro-diesel. J. of Cleaner Production, 370(3), 133479. https://doi.org/10.1016/j.jclepro.2022.133479

Babadi, A. A., Rahmati, S., Fakhlaei, R., Barati, B., Wang, S., Doherty, W., & Ostrikov, K. (2022). Emerging technologies for biodiesel production: Processes, challenges, and opportunities. Biomass and Bioenergy, 163, 106521. https://doi.org/10.1016/j.biombioe.2022.106521

Benites, C. I., Klein, B. C., & Reis, S. M. P. M. (2014). Neutralization of soybean oil deodorizer distillate for vitamin supplement production. International J. of Chemical Engineering, 2014, 17.

Bouaid, A., Vzquez, R., MartNez, M., & Aracil, J. (2016). Effect of free fatty acids contents on biodiesel quality. Pilot plant studies. Fuel, 174, 5462. https://doi.org/10.1016/j.fuel.2016.01.018

Das, A., and Rokhum, S.L. (2024). Renewable Diesel and Biodiesel: A Comparative Analysis. In Elsevier eBooks (pp. 123166).

Dave, D., Ramakrishnan, V. V., Trenholm, S., Manuel, H., Pohling, J., & Murphy, W. (2014). Marine oils as potential feedstock for biodiesel production: physicochemical characterization. J. Bioprocess Biotech, 4, 168. https://doi.org/10.4172/2155-9821.1000168

Esan, A. O., Babalola, B. A., Raji, Y. A., Oladigbolu, M. A., Ajao, G. Q., Olawoore, I. T., & Adeyemi, A. D. (2024). Characterization of palm fatty acid distillate and soybean deodorized distillate for biodiesel production. J. Appl. Sci. Environ. Manage., 28(5) 1461-1466.

Evbuowman, B. O., Lawson, J. N., & Atuka, M. M. (2013). Some physicochemical properties of cashew nut (Anacardium occidentale) and palm kernel (Elaeis guineensis) oil using straight run gasoline. International J. of Science and Engineering Investigations, 2(20), 82-84.

Eze, N. S. O. O. (2012). Physico-chemical properties of oil from some selected underutilized oil seeds available for biodiesel preparation. Afr. J. of Biotechnology, 11(42), 10003-10007. https://doi.org/10.5897/ajb11.1659

Febrianto, F., Setianingsih, A., & Riyani, A. (2020). Determination of free fatty acid in frying oils of various foodstuffs. Indonesian J. of Chemistry and Environment, 2(1), 16. https://doi.org/10.21831/ijce.v2i1.30288

Hardy, R.W., & Barrows, F.T., 2003. Diet Formulation and Manufacture, in: Halver, J.E., Hardy, R.W. (Eds.), Fish Nutrition. Academic Press, San Diego, pp. 506-601. https://doi.org/10.1016/b978-012319652-1/50010-0

Hassan, Q., Viktor, P., Al-Musawi, T. J., Ali, B. M., Algburi, S., Alzoubi, H. M., Al-Jiboory, A. K., Sameen, A. Z., Salman, H. M., & Jaszczur, M. (2024). The renewable energy role in the global energy Transformations. Renewable Energy Focus, 48(12), 100545. https://doi.org/10.1016/j.ref.2024.100545

Hilp, M. (2002). Determination of iodine values according to Hanu using 1,3-dibromo-5,5-dimethylhydantoin (DBH). J. of Pharmaceutical and Biomedical Analysis, 28(1), 8186. https://doi.org/10.1016/s0731-7085(01)00632-x

Holechek, J. L., Geli, H. M. E., Sawalhah, M. N., & Valdez, R. (2022). A global assessment: Can renewable energy replace fossil fuels by 2050? Sustainability, 14(8), 1-22. https://doi.org/10.3390/su14084792

Ibeto, C. N., Okoye, C. O. B., & Ofoefule, A. U. (2012). Comparative study of the physicochemical characterization of some oils as potential feedstock for biodiesel production. ISRN Renewable Energy, 2012(4), 1-5. https://doi.org/10.5402/2012/621518

Igwebuike, C. M. (2023). Biodiesel: Analysis of production, efficiency, economics and sustainability in Nigeria. Clean Technologies and Recycling, 3(2), 92-106. https://doi.org/10.3934/ctr.2023006

Lv, W., Wu, C., Lin, S., Wang, X., & Wang, Y. (2021). Integrated Utilization Strategy for soybean oil deodorizer distillate: synergically synthesizing biodiesel and recovering bioactive compounds by a combined enzymatic process and molecular distillation. ACS Omega, 6(13), 91419152. https://doi.org/10.1021/acsomega.1c00333

Maroa, S., and Inambao, F. (2020). Physicochemical Properties of Biodiesel. Biodiesel, Combustion, Performance and Emissions Characteristics. (pp. 45-65).

Mathew, G. M., Raina, D., Narisetty, V., Kumar, V., Saran, S., Pugazhendi, A., Sindhu, R., Pandey, A., & Binod, P. (2021). Recent advances in biodiesel production: Challenges and solutions. The Science of the Total Environment, 794, 1-15. https://doi.org/10.1016/j.scitotenv.2021.148751

Nduka, J. K. C., Omozuwa, P. O., & Imanah, O. E. (2021). Effects of heating time on the physicochemical properties of selected vegetable oils. Arabian J. of Chemistry, 14(4), 103063. https://doi.org/10.1016/j.arabjc.2021.103063

Ogunsuyi, H. O., & Daramola B. M. (2013). Evaluation of almond (Prunus amygdalus) seed oil as a viable feedstock for biodiesel fuel. International J. of Biotechnology Research, 1(8), 120-127.

Olabanji, I. O., Ajayi, S. O., Akinkunmi, E. O., Kilanko, O., & Adefemi, G. O. (2016) Physicochemical and in vitro antimicrobial activity of the oils and soap of the seed and peel of Citrus sinensis. African J. of Microbiology Research, 10(8), 245-253. https://doi.org/10.5897/AJMR2015.7797

Osarumwense, J. O., Ebo, N., Omorodion, N. T., & Owie, C. I. (2020). Physico-chemical characteristics of biodiesel produced via transesterification of commercial vegetable (soya bean) oil. NIPES J. of Science and Technology Research, 2(3), 183-190. https://doi.org/10.37933/nipes/2.3.2020.19

Pikula, K., Zakharenko, A., Stratidakis, A., Razgonova, M., Nosyrev, A., Mezhuev, Y., Tsatsakis, A., & Golokhvast, K. (2020). The advances and limitations in biodiesel production: feedstocks, oil extraction methods, production, and environmental life cycle assessment. Green Chemistry Letters and Reviews, 13(4), 275294. https://doi.org/10.1080/17518253.2020.1829099

Pydimalla, M., Husaini, S., Kadire, A., & Verma, R. K. (2023). Sustainable biodiesel: A comprehensive review on feedstock, production methods, applications, challenges and opportunities. Materials Today Proceedings, 92(1244), 458464. https://doi.org/10.1016/j.matpr.2023.03.593

Sana, B., & Shouriehebal, S. (2023). Review on the impact of peroxide value from edible oil: Indian perspective. J. of Survey in Fisheries Sciences, 10(2), 26-33.

Shaah, M. A. H., Hossain, M. S., Allafi, F. A. S., Alsaedi, A., Ismail, N., Kadir, M. O. A., & Ahmad, M. I. (2021). A review on non-edible oil as a potential feedstock for biodiesel: physicochemical properties and production technologies. RSC Advances, 11(40), 2501825037. https://doi.org/10.1039/d1ra04311k

Singh, D., Sharma, D., Soni, S., Inda, C. S., Sharma, S., Sharma, P. K., & Jhalani, A. (2021). A comprehensive review of biodiesel production from waste cooking oil and its use as fuel in compression ignition engines: 3rd generation cleaner feedstock. J. of Cleaner Production, 307(3), 127299. https://doi.org/10.1016/j.jclepro.2021.127299

Singh, D., Sharma, D., Soni, S., Sharma, S., Sharma, P. K., & Jhalani, A. (2019). A review on feedstocks, production processes, and yield for different generations of biodiesel. Fuel, 262, 1-15. https://doi.org/10.1016/j.fuel.2019.116553

Suzihaque, M., Alwi, H., Ibrahim, U. K., Abdullah, S., & Haron, N. (2022). Biodiesel production from waste cooking oil: A brief review. Materials Today Proceedings, 63(3), S490S495. https://doi.org/10.1016/j.matpr.2022.04.527

Triyasmono, L., Schollmayer, C., Schmitz, J., Hovah, E., Lombo, C., Schmidt, S., & Horlzgrabe, U. (2022). Simultaneous Determination of the Saponification Value, Acid Value, Ester Value, and Iodine Value in Commercially Available Red Fruit Oil (Pandanus conoidues, Lam.) Using 1H qNMR Spectrocopy. Food Analytical Methods, 16, 155-167.

Wazed, M. A., Yasmin, S., Basak, P., Hossain, A., Rahman, M. M., Hasan, M. R., Khair, M. M., & Khatun, M. N. (2023). Evaluation of physicochemical parameters of edible oils at room temperature and after heating at high temperature. Food Research, 7(4), 91-100. https://doi.org/10.26656/fr.2017.7(4).900

Xie, P., Zhu, Z., Hu, G., & Huang, J. (2022). Renewable energy and economic growth hypothesis: Evidence from N-11 countries. Economic Research-Ekonomska Istraivanja, 36(1), 1-21. https://doi.org/10.1080/1331677x.2022.2121741

Yin, X., You, Q., Ma, H., Dai, C., Zhang, H., Li, K., & Li, Y. (2015). Biodiesel production from soybean oil deodorizer distillate enhanced by counter-current pulsed ultrasound. Ultrasonics Sonochemistry, 23(2015), 5358. https://doi.org/10.1016/j.ultsonch.2014.08.020

Published
2025-07-20
How to Cite
Olafimihan, B. A., Esan, A. O., Ishola, K. T., Shittu, M. O. A., & Adetayo-Balogun, A. A. (2025). PHYSICOCHEMICAL PROPERTIES OF REFINED SOYBEAN OIL AND DEODORIZER DISTILLATE AS BIODIESEL FEEDSTOCKS. FUDMA JOURNAL OF SCIENCES, 9(7), 235 - 239. https://doi.org/10.33003/fjs-2025-0907-3522