KAOLINITE CLAY AS GREEN AND SUSTAINABLE RAW MATERIAL FOR ZEOLITES PRODUCTION: A REVIEW

  • Adikwu Gowon Jacob Federal University Dutsin-Ma
  • Ikechukwu Ogadimma Alisi Federal University Dutsin-Ma
  • Jikamshi Mustapha Surajo Federal University Dutsin-Ma
Keywords: Applications, Characterization, Clay minerals, Kaolinite clay, Zeolites

Abstract

This review explored the potential of kaolinite clay as a green and sustainable raw material for the production of zeolites. Clay is a naturally abundant and inexpensive mineral, with unique properties that make it an ideal precursor for zeolite synthesis. The review discussed the properties and applications of clay minerals, as well as the preparations and applications of metakaolin, the thermally activated form of kaolinite clay. Furthermore, the review delved into the properties, structures, types, and methods of preparation of zeolites from metakaolin. Applications of zeolites in various fields, including catalysis, adsorption, and environmental remediation were highlighted. Moreover, the various characterization methods for zeolites including X-ray diffraction, scanning electron microscopy, X-ray fluorescence (XRF) and nitrogen adsorption-desorption analysis were also discussed. Obviously, the review have provided a comprehensive understanding of the potential of kaolinite clay as a sustainable raw material for zeolite production. Findings of the study will not only advance the understanding of zeolite production from kaolinite clay, but will also promote their industrial applications.

References

Abdulkareem, A.S., Ojo, J.A. (2022). Zeolite synthesis from local kaolinite clays: A comparative study. Journal of Environmental Management, 298, 113532.

Abdullah, A.H., Zulkefli, N.N., Abd Aziz, A.S., and Mat, R. (2016). Synthesis of zeolite Na-A from local kaolin for bioethanol purification. Journal of Science and Technology, 9(9), https://doi.org/10.17485/ijst/2016/v9i9/88726. DOI: https://doi.org/10.17485/ijst/2016/v9i9/88726

Ajibola, A.A, Omoleye, J.A, Efeovbokhan, V.E. (2018). Catalytic cracking of polyethylene plastic waste using synthesized zeolite Y from Nigerian kaolin deposit. Applied Petrochem Resource, 8(4):211-217. DOI: https://doi.org/10.1007/s13203-018-0216-7

Akinruli, I.J., Owoeye, S.S., Abegunde, S.M., Onipede, A.E., Kingsley, U. (2021). Synthesis and characterization of NaA zeolite using natural kaolinite clays from Nigeria by low temperature hydrothermal method. International Journal of Research in Engineering, Science and Management, 4(2), 40-47. https://doi.org/10.47607/ijresm.2021.498. DOI: https://doi.org/10.47607/ijresm.2021.498

Ammann, L. 2003 Cation Exchange and Adsorption on Clay and Clay Minerals, Unpublished PhD Dissertation, Christian-Albrechts Universitt.

Aroke, U.O, El-Nafaty U.A, Osha O.A. (2013). Properties and characterization of kaolin clay from Alkaleri North-Eastern Nigeria. International Journal of Emerging Technology and Advanced Engineering. 3, 2250-2459.

Artillo, F., Cueto, J., Hernando, H., Pizarro, P., Serrano, D.P. (2023). Moderate pressure boosts the aromatization activity of HZSM-5 zeolite during catalytic pyrolysis of lignocellulosic materials. Industrial Crops and Products, 194, 116313 https://doi.org/10.1016/j.indcrop.2023.116313. DOI: https://doi.org/10.1016/j.indcrop.2023.116313

Ayoola, A.A., Hymore, F.K., Ojewumi, M.E., Uwoghiren, O.J. (2018). Effects of sodium hydroxide concentration on zeolite Y synthesized from Elefun Kaolinite clay in Nigeria. International Journal of Applied Engineering Resources, 13(3):1536-1536.

Babalola, R., Bassey, E.N., Brown, I.L., Salahudeen, N. (2017). Identification of kaolinite clay in five local government areas of Akwa Ibom State, Nigeria for zeolite synthesis as a way of import substitution. Journal of Emerging Trends in Engineering and Applied Sciences, 8(5):215-218.

Bahgaat, A.K, Abdel, K.A., Melegy, A.A., Hassan, H.E.S. (2020). Synthesis and characterization of zeolite-Y from natural clay of Wadi Hagul Egypt. Egypt Journal of Chemistry, 63(10):2-3.

Bao, X., Yue, Y., Li, T., Liu, H., He, S., Yu, J. (2018). China University of Petroleum Beijing CUPB and China National Petroleum Corp. ZSM-5 type molecular sieve synthesis method. U.S. Patent.

Bessa, R. de A., Costa, L. de S., Oliveira, C. P., Bohn, F., do Nascimento, R. F., Sasaki, J. M., &Loiola, A. R. (2017). Kaolin-based magnetic zeolites A and P as water softeners. Microporous and Mesoporous Materials, 245, 64-72. https://doi.org/10.1016/j.mi cromeso.2017.03.004. DOI: https://doi.org/10.1016/j.micromeso.2017.03.004

Bhatia, S. (2020). Zeolite catalysis: principles and applications. CRC Press. https://doi.org/10.1201/9781003068389.

Bhatia, S. (2020). Zeolite catalysis: principles and applications. CRC Press. https://doi.org/10.1201/9781003068389. DOI: https://doi.org/10.1201/9781003068389

Augustyn A. Clay, Encyclopedia Britanica. (2020). Available from https://www.britannica.com/science/sand (Accessed: 2020-06-20).

Chebude, Y., Daz, I. (2015). Microporous and mesoporous materials synthesis of zeolite A from Ethiopian kaolin. Microporous and Mesoporous Materials, 215:29-36. https://doi.org/10.1016/j.micromeso.2015.05.022. DOI: https://doi.org/10.1016/j.micromeso.2015.05.022

Cherif MM, Amal M, Ramdane B. (2018). Effect of swelling minerals on geotechnical characteristics of clay soil. MATEC web of conference, 149: 02067. DOI: https://doi.org/10.1051/matecconf/201814902067. DOI: https://doi.org/10.1051/matecconf/201814902067

Choo, M.-Y., EngOi, L., Lin, Y.-C., Chuan Ling, T., Ng, E.-P., Chen, W.-H., Kui Cheng, C., Ching Juan, J. (2022). Uniform mesoporous hierarchical nanosized zeolite Y for production of Hydrocarbon-like biofuel under H2-Free deoxygenation. Fuel, 322, 124208. https://doi.org/10.1016/j.fuel.2022.124208. DOI: https://doi.org/10.1016/j.fuel.2022.124208

Christopher, B., Nigel, D., Jack, Y. (2012). The thermal stability of mixed phenylphosphonic acid/water intercalates of kaolin and halloysite. A TGEGA and VT-DRIFTS study, Journal of Material Chemistry, 12: 273-278. DOI: https://doi.org/10.1039/b104254h

Cruz, C., Cisternas, L.A., Kraslawski, A. (2018). Scaling problems and control technologies in industrial operations:Technology Assessment. Separation and Purification Technology, 207, 20-27. https://doi.org/10.1016/j.seppur.2018.06.023. DOI: https://doi.org/10.1016/j.seppur.2018.06.023

Deniz, I. (2015). Organoclay preparation for anionic contaminant removal from water, Unpublished Master of Science Thesis, Middle East Technical University.

Djeffal, N., Benbouzid, M., Boukoussa, B., Sekkiou, H., Bengueddach, A. (2017). CO2 adsorption properties of ion-exchanged zeolite Y prepared from natural clays. Materials Research Express, 4 (3), 35504. https://doi.org/10.1088/2053-1591/aa6465. DOI: https://doi.org/10.1088/2053-1591/aa6465

Garshasbi, V., Jahangiri, M., Anbia, M. (2017). Equilibrium CO2 adsorption on zeolite 13X prepared from natural clays. Applied Surface Science, 393: 225-233. https://doi.org/10.1016/j.apsusc.2016.09.161. DOI: https://doi.org/10.1016/j.apsusc.2016.09.161

Gebremariam S.N., Marchetti J.M. (2018). Biodiesel production through sulfuric acid catalyzed transesterification of acidic oil: Techno economic feasibility of different process alternatives. Energy Conversation Management, 174:639-648. DOI: https://doi.org/10.1016/j.enconman.2018.08.078

Hakeem I.G, Aberuagba F, Musa U. (2018). Catalytic pyrolysis of waste polypropylene using Ahoko kaolin from Nigeria. Applied Petrochemical Resource, 8(4):203-210. DOI: https://doi.org/10.1007/s13203-018-0207-8

He, Y., Tang, S., Yin, S., Li, S. (2021). Research progress on green synthesis of various high-purity zeolites from natural material-kaolin. Journal of Cleaner Production, 306, 127248. https://doi.org/10.1016/j.jclepro.2021.127248. DOI: https://doi.org/10.1016/j.jclepro.2021.127248

Hernandez-Palomares, A., Espejel-Ayala, F. (2022). Precipitated silica, alkali silicates and zeolites from construction and demolition waste materials. Journal of Cleaner Production 348. https://doi.org/10.1016/j.jclepro.2022.131346. DOI: https://doi.org/10.1016/j.jclepro.2022.131346

Hong, W.Y., Perera, S.P., Burrows, A.D. (2020) Comparison of MIL-101(Cr) metal-organic framework and 13X zeolite monoliths for CO2 capture. Microporous Mesoporous Materials, 308, https://doi.org/10.1016/j.micromeso.2020.110525. DOI: https://doi.org/10.1016/j.micromeso.2020.110525

Jiang, J., Duanmu, C., Yang, Y., Gu, X., Chen, J., 2014. Synthesis and characterization of high siliceous ZSM-5 zeolite from acid-treated palygorskite. Powder Technology, 251, 9-14. https://doi.org/10.1016/j.powtec.2013.10.020. DOI: https://doi.org/10.1016/j.powtec.2013.10.020

Joseph, I.V., Tosheva, L., Doyle, A.M. (2020). Simultaneous removal of Cd(II), Co(II), Cu (II), Pb(II), and Zn(II) ions from aqueous solutions via adsorption on FAU-type zeolites prepared from coal fly ash. Journal of Environmental Chemical Engineering 8(4), 103895. https://doi.org/10.1016/j.jece.2020.103895. DOI: https://doi.org/10.1016/j.jece.2020.103895

Justice J.M (2005). Evaluation of Metakaolin for Use as Supplementary Cementitious Materials. Thesis submitted for Master Degree, Georgia Institute of Technology, April 2005

Kadri E.H., Kenai S., Ezziane K., Siddique R., Schutter G.D. (2011). Influence of MK and silica fume on the heat of hydration and compressive strength development of mortar, Applied Clay Science, 53:704-708. DOI: https://doi.org/10.1016/j.clay.2011.06.008

Karpinski B., Szkodo M. (2015). Clay minerals-mineralogy and phenomenon of clay swelling in oil and gas industry. Advanced in Material Science, 15: 37-55. https://doi.org/10.1515/adms-2015-0006. DOI: https://doi.org/10.1515/adms-2015-0006

Karthik, A., Sudalaimani, K., Vijaya-Kumar, C.T. (2017), Investigation on mechanical properties of fly ash-ground granulated blast furnace slag based self-curing bio geopolymer concrete, Construction and Building Materials, 149, 338-349. DOI: https://doi.org/10.1016/j.conbuildmat.2017.05.139

Khatib, J.M., Adams, G. (2016). Dimensional stability of MK mortar subjected to different environmental conditions, International Workshop on UK Research Collaboration with Kazakhstan: Utilization and Treatment of Wastes Arising from Mining Activities, Oil and other Industries, sponsored by the British Council-Newton-Al-Farabi Partnership Programme.

Khatib, J.M., Ahmadeen, M. (2016). Capillary water absorption of concrete containing small amounts of MK and silica fume, International Workshop on UK Research Collaboration with Kazakhstan: Utilization and Treatment of Wastes Arising from Mining Activities, Oil and other Industries, sponsored by the British Council-Newton-Al-Farabi Partnership Programme.

Khatib, J.M., Halliday, C., Kenai, S., Negim, E.M. (2014). Incorporation of MK in Lime Activated Fly Ash Paste, 3rd International Seminar: Innovation and Valorization in Civil Engineering & Construction, INVACO2014, Houari Boumediene University of Science and Technology, Algiers, Algeria, 17-18 November, 1:362-364.

Khatib, J.M., Onaidhe, E., Sonebi, M., Abdelgader, H. (2015), Lime activation of fly ash in mortar in the presence of MK, Proceedings of the 1st International Conference on Bio based Building Materials (ICBBM 2015), Eds. Amziane & Sonebi, 21-24 June 2015, Claremont-Ferrand, France. RILEM publication, pp 107-110, ISBN PRO 99: 978-2 35158-154-4 https://sites.google.com/site/icbbm2015/home

Khatib, J.M., Siddique, R., Bougara, A., Harris, P. (2009a). Effect of MK on Adiabatic Temperature Rise of Cement Based Mortar, The 8th Annual International Conference, Sustainable Aggregates, Pavement Engineering & Asphalt Technology, Design Construction, Management, Performance & Rehabilitations, 18-19 Feb, Liverpool John Moor University, Liverpool, UK, Paper No. 20.

Khatib, J.M, Wild, S., Siddique, R., Kenai, S. (2009b). Adiabatic temperature rise of MK mortar, International Conference-Excellence in Concrete Construction Through Innovation, Kingston University, 9-10, 233-238, (Editors: Limbachiya M C & Kew H Y), Taylor & Francis Group publishing, 2009, ISBN 978-0 415-47592-1.

Kodama, H. (2020). Clay minerals, Encyclopedia Britannica, Available from https://www.britannica.com/science/clay-mineral/Interstratified-clay-minerals (Accessed: 2020-10-20).

Krongkrachang, P., Thungngern, P., Asawaworarit, P., Houngkamhang, N., Eiad-Ua, A. (2019). Synthesis of zeolite Y from kaolin via hydrothermal method. Materials Today: Proceedings, 17, 1431-1436. DOI: https://doi.org/10.1016/j.matpr.2019.06.164

Lam, A., Rivera, A., 2006. Theoretical study of the interaction of surfactants and drugs with natural zeolite. Microporous and Mesoporous Materials, 91(1-3), 181186. https://doi.org/10.1016/j.micromeso.2005.11.035. DOI: https://doi.org/10.1016/j.micromeso.2005.11.035

Ma, H., Ya, Q., Fu, Y., Ma, C., Dong, X. (2010. Synthesis of zeolite of type A from bentonite by alkali fusion activation using Na2CO3. Industrial and Engineering Chemistry Research, 49 (2), 454-458. https://doi.org/10.1021/ie901205y. DOI: https://doi.org/10.1021/ie901205y

Ma, Y.K., Rigolet, S., Michelin, L., Paillaud, J.L., Mintova, S., Khoerunnisa, F. & Ng, E. P. (2021). Facile and fast determination of Si/Al ratio of zeolites using FTIR spectroscopy technique. Microporous and Mesoporous Materials, 311, 110683. DOI: https://doi.org/10.1016/j.micromeso.2020.110683

Maciver, V.P., Dagde, K.K; Konne, J.L. (2020). Synthesis of zeolite x from locally sourced kaolin clay from Kono-Boue and Chokocho, Rivers State, Nigeria Advanced Chemical Engineering Science, 10(4), 399-407. DOI: https://doi.org/10.4236/aces.2020.104025

Maigari, A.S., Obaje, N.G., Haruna, A. I. and Isa, M.T. (2015). Mineralogy and geochemistry of some clays of the Kerri-Kerri formation in the Upper Benue Trough, North-Eastern Nigeria, Research Journal of Science, 11(1&2), 17-30.

Melo, C.C.A., Melo, B.L.S, Anglica, R.S., Paz, S.P.A. (2019). Gibbsite-kaolinite waste from bauxite beneficiation to obtain FAU zeolite: synthesis optimization using a factorial design of experiments and response surface methodology. Applied Clay Science, 170:125-134. DOI: https://doi.org/10.1016/j.clay.2019.01.010

Mezni, M., Hamzaoui, A., Hamdi, N., Srasra, E. (2011). Synthesis of zeolites from the low-grade Tunisian natural illite by two different methods. Applied Clay Science, 52(3), 209-218. https://doi.org/10.1016/j.clay.2011.02.017. DOI: https://doi.org/10.1016/j.clay.2011.02.017

Mignoni, M.L., Petkowicz, D.I., Machado, N.R.C.F., Pergher, S.B.C., 2008. Synthesis of mordenite using kaolin as Si and Al source. Applied Clay Science, 41(1-2), 99-104. https://doi.org/10.1016/J.CLAY.2007.09.010. DOI: https://doi.org/10.1016/j.clay.2007.09.010

Mohamed, M.M., Zidan, F.I., Thabet, M. (2008). Synthesis of ZSM-5 zeolite from rice husk ash: Characterization and implications for photocatalytic degradation catalysts. Microporous and Mesoporous Materials, 108(1-3), 193-203. https://doi.org/10.1016/j.micromeso.2007.03.043. DOI: https://doi.org/10.1016/j.micromeso.2007.03.043

Mohiuddin, E., Makar, Y., Mdleleni, M.M., Sincadu, N., Key, D., Tshabalala, T. (2016). Synthesis of ZSM-5 from impure and beneficiated Grahamstownkaolin: Effect of kaolinite content, crystallisation temperatures and time. Applied Clay Science, 119, 213-221. https://doi.org/10.1016/j.clay.2015.10.008. DOI: https://doi.org/10.1016/j.clay.2015.10.008

Mokwa, J.B., Lawal, S.A., Abolarin, M.S., Bala, K.C. (2019). Characterization and evaluation of selected kaolin clay deposits in Nigeria for furnace lining application. Nigerian Journal Technology, 38(4), 936-946. DOI: https://doi.org/10.4314/njt.v38i4.17

Moreno-Maroto, J.M., Alonso-Azcrate, J. (2018). What is clay? A new definition of clay based on plasticity and its impact on the most widespread soil classification systems. Applied Clay Science, 161, 57-63. DOI: https://doi.org/10.1016/j.clay.2018.04.011

Murray H.H. Structure and composition of clay minerals and their physical and chemical properties. Applied clay mineralogy-occurrence, processing and applications of Kaoline, Bentonite, Polygorskite-Sepiolite and common clays. Haydn H Murray, 7-31. https://doi.org/10.1016/s1572-4352(06)02002-2 DOI: https://doi.org/10.1016/S1572-4352(06)02002-2

Musyoka, N.M., Missengue, R., Kusisakana, M., Petrik, L.F., 2014. Conversion of South African clays into high quality zeolites. Applied Clay Science, 97, 182-186. http://hdl.handle.net/10204/7730. DOI: https://doi.org/10.1016/j.clay.2014.05.026

Ng, T.Y.S., Chew, T.L., & Yeong, Y.F. (2019). Synthesis of small pore zeolite via ultrasonic-assisted hydrothermal synthesis. Materials Today: Proceedings, 16, 1935-1941. DOI: https://doi.org/10.1016/j.matpr.2019.06.071

Ogunniyi, S.A., & Adeyemi, A. (2020). Characterization and applications of synthesized zeolites from local kaolinite clays. Applied Clay Science, 182, 105274.

Oke, E.O., Adeyi O, Okolo, B.I., Adeyi, J.A, Ayanyemi, J., Osoh K.A., Adegoke, T.S. (2020) Phenolic compound extraction from Nigerian Azadirachta Indica leaves: response surface and neuro-fuzzy modelling performance evaluation with Cuckoo Search multi-objective optimization. Results Engineering, 8:100160 DOI: https://doi.org/10.1016/j.rineng.2020.100160

Olaremu, A.G. (2021). Local and industrial applications of clay. Chemical Research Journal 6(2), 157-168.

Orodu, P.D. (2017). Properties and application of Nigerian bentonite clay deposits for drilling mud formulation: Recent advances and. Applied Clay Science, 143, 39-49. DOI: https://doi.org/10.1016/j.clay.2017.03.009

Oshima, K., Kadonaga, R., Shiba, M., Sohmiya, M., Satokawa, S. (2020). Adsorption and catalytic decomposition of dimethyl sulfide on H-BEA zeolite. International Journal Hydrogen Energy, 45, 27644-27652. https://doi.org/10.1016/j.ijhydene.2020.07.106. DOI: https://doi.org/10.1016/j.ijhydene.2020.07.106

Parthasarathy, P., Narayanan, S.K. (2014). Green Synthesis of Nano-Silicalite-1: Biomass Fly Ash as a Silica Source and Mother Liquid Recycling. Environmental Progress & Sustainable Energy, 33(3), 676-680. https://doi.org/10.1002/ep.

Pereira, P.M., Ferreira, B.F., Oliveira, N.P., Jos, E., Ciuffi, K.J., Vicente, M.A., Trujillano, R., Id, V. R., Id, A.G., Korili, S., & Faria, E.H. De. (2018.). Synthesis of zeolite A from metakaolin and its application in the adsorption of cationic dyes. Applied Sciences, 8(4), 608, https://doi.org/10.3390/app8040608. DOI: https://doi.org/10.3390/app8040608

Petrov, I., & Michalev, T. (2012). Synthesis of zeolite A: A Review. Proceedings - Chemical Technologies, 51, Book 9.1, 3035. http://conf.uni-ruse.bg/bg/docs/cp12/9.1/9.1-5.pdf.

Reed, T.B., Breck, D.W., 1956. Crystalline Zeolites. II. Crystal Structure of Synthetic Zeolite, Type A. Journal of the American Chemical Society, 78(23), 5972-5977. https://doi.org/10.1021/ja01604a002 DOI: https://doi.org/10.1021/ja01604a002

Ren, X., Liu, S., Qu, R., Xiao, L., Hu, P., Song, H., Wu, W., Zheng, C., Wu, X., Gao, X. (2020). Synthesis and characterization of single-phase submicron zeolite Y from coal f ly ash and its potential application for acetone adsorption. microporous and mesoporous materials, 295, 109940. https://doi.org/10.1016/j. micromeso.2019.109940. DOI: https://doi.org/10.1016/j.micromeso.2019.109940

Santander, J.E., Tsapatsis, M., Auerbach, S.M. (2013). Simulating adsorptive expansion of zeolites: application to biomass-derived solutions in contact with silicalite. Langmuir 29(15), 4866-4876 DOI: https://doi.org/10.1021/la300932a

Sen, M., Dana, K., Das, N. (2018). Development of LTA zeolite membrane from clay by sonication assisted method at room temperature for H2CO2 and CO2CH4 separation. Ultrasonics Sonochemistry, 48, 299-310. https://doi.org/10.1016/j.ultsonch.2018.06.007. DOI: https://doi.org/10.1016/j.ultsonch.2018.06.007

Sivalingam, S., Sen, S. (2019). Swift sono-hydrothermal synthesis of pure NaXnanocrystals with improved sorption capacity from industrial resources. Applied Surface Science, 463, 190-196. https://doi.org/10.1016/j.apsusc.2018.08.019. DOI: https://doi.org/10.1016/j.apsusc.2018.08.019

Sutherland, W.M. (2014). Wyoming bentonite. Available from https://www.wsgs.wyo.gov/products/wsgs2014-bentonite-summary.pdf (Accessed 2020-08-05).

Ugochukwu, U.C. (2019). Characteristics of clay minerals relevant to bioremediation of environmental contaminated system. Modified clay and zeolite nanocomposite material, 219-242. https://doi.org/10.1016/B978-0-12-814617-0. 00006-2. DOI: https://doi.org/10.1016/B978-0-12-814617-0.00006-2

Velde, B. (2020). Introduction to Clay Minerals, Chapman & Hall, London.

Verbung K, Baveye P. (2014). Hysterisis in the binary exchange of cations on 2:1 clay minerals: A critical review. Clays and Clay Minerals, 42:207-220. https://doi.org/10.1346/CCMN.2014. 0420211 DOI: https://doi.org/10.1346/CCMN.1994.0420211

Wang, S., Peng, Y. (2010). Natural zeolites as effective adsorbents in water and wastewater treatment. Chemical Engineering Journal, 156(1), 11-24. https://doi.org/10.1016/j.cej.2009.10.029. DOI: https://doi.org/10.1016/j.cej.2009.10.029

Watanabe, Yamada, H., Tanaka, J., Moriyoshi, Y. (2015). Hydrothermal modification of natural zeolites to improve uptake of ammonium ions. Journal of Chemical Technology and Biotechnology, 80(4), 376-380. https://doi.org/10.1002/jctb.1224. DOI: https://doi.org/10.1002/jctb.1224

Yang, J., Liu, H., Diao, H., Li, B., Yue, Y., Bao, X. (2017). A Quasi-Solid-Phase Approach to Activate Natural Minerals for Zeolite Synthesis. ACS Sustainable Chemistry and Engineering, 5(4), 3233-3242. https://doi.org/10.1021/acssuschemeng.6b03031. DOI: https://doi.org/10.1021/acssuschemeng.6b03031

Yue, Y., Kang, Y., Bai, Y., Gu, L., Liu, H., Bao, J., Wang, T., Yuan, P., Zhu, H., Bai, Z., Bao, X (2018). Seed-assisted, template-free synthesis of ZSM-5 zeolite from natural aluminosilicate minerals. Applied Clay Science. 158, 177-185. https://doi.org/10.1016/j.clay.2018.03.025. DOI: https://doi.org/10.1016/j.clay.2018.03.025

Zones, S.I., Lew, C.M., Xie, D., Davis, T.M., Schmidt, J.E., Saxton, R.J. (2020). Studies on the use of faujasite as a reagent to deliver silica and alumina in building new zeolite structures with organo-cations. Microporous and Mesoporous Materials, 300, 110162. https://doi.org/10.1016/j.micromeso.2020.110162. DOI: https://doi.org/10.1016/j.micromeso.2020.110162

Published
2025-04-26
How to Cite
Jacob, A. G., Alisi, I. O., & Surajo, J. M. (2025). KAOLINITE CLAY AS GREEN AND SUSTAINABLE RAW MATERIAL FOR ZEOLITES PRODUCTION: A REVIEW. FUDMA JOURNAL OF SCIENCES, 9, 18 - 35. https://doi.org/10.33003/fjs-2025-09(AHBSI)-3496