INVESTIGATION OF GAMMA-RAY SHIELDING PERFORMANCE OF BOROSILICATE GLASSES DOPED WITH TiO2 USING PHY-X/PSD AND XCOM SOFTWARE
Abstract
Growing demand for eco-friendly gamma-ray shielding materials has inspired interest in borosilicate glasses enhanced with heavy metal oxides (HMOs). This study uniquely evaluates the influence of borosilicate glasses doped with TiO across a broad energy range Spectrum. The gamma-ray shielding performance of TiO-doped borosilicate glasses with the composition of 30B2O3(70-x)SiO2xTiO2 glass system was investigated (where x = 0, 1, 2, 3, 4 and 5mol%). Shielding parameters mass attenuation coefficient (MAC), half-value layer (HVL), tenth-value layer (TVL), mean free path (MFP), and effective atomic number (Zeff) were calculated using the Phy-X/PSD software over photon energies from 0.015 15MeV. The mass attenuation coefficient results obtained were cross-verified with XCOM database values, demonstrating close correlation and validating the computational accuracy. The results revealed that increasing TiO concentration led to a slight but consistent enhancement in gamma-ray shielding compared to the undoped sample. GDTi5 exhibited the best performance, with a MAC of 5.400 cm/g, Zeff of 13.05, HVL of 0.0497 cm, and MFP of 0.070 cm at 0.015 MeV. The order of shielding effectiveness was GDTi5 > GDTi4 > GDTi3 > GDTi2 > GDTi1 > undoped. These TiO-doped borosilicate glasses, especially GDTi5, are suitable for applications requiring moderate radiation protection and optical transparency, such as diagnostic imaging rooms, nuclear laboratory windows, and portable protective screens.
References
Abouhaswa, A. S., Zakaly, H. M. H., Issa, S. A. M., Rashad, M., Pyshkina, M., Tekin, H. O., El-Mallawany, R., & Mostafa, M. Y. A. (2021). Synthesis, physical, optical, mechanical, and radiation attenuation properties of TiO2Na2OBi2O3B2O3 glasses. Ceramics International, 47(1), 185204. https://doi.org/10.1016/j.ceramint.2020.08.122 DOI: https://doi.org/10.1016/j.ceramint.2020.08.122
Agar, O., Khattari, Z. Y., Sayyed, M. I., Tekin, H. O., Al-Omari, S., Maghrabi, M., Zaid, M. H. M., & Kityk, I. V. (2019). Evaluation of the shielding parameters of alkaline earth based phosphate glasses using MCNPX code. Results in Physics, 12(November 2018), 101106. https://doi.org/10.1016/j.rinp.2018.11.054 DOI: https://doi.org/10.1016/j.rinp.2018.11.054
Al-Hadeethi, Y., & Sayyed, M. I. (2019). Analysis of borosilicate glasses doped with heavy metal oxides for gamma radiation shielding application using Geant4 simulation code. Ceramics International, 45(18), 2485824864. https://doi.org/10.1016/j.ceramint.2019.08.234 DOI: https://doi.org/10.1016/j.ceramint.2019.08.234
Alomari, A. H., & Al-Qahtani, S. M. (2024). Enhanced gamma shielding properties of borosilicate glasses with Gd2O3 addition: A theoretical study using Phy-X/PSD and XCOM programs. Journal of Radiation Research and Applied Sciences, 17(3), 100996. https://doi.org/10.1016/j.jrras.2024.100996 DOI: https://doi.org/10.1016/j.jrras.2024.100996
Akn, A., Sayyed, M. I., Sharma, A., Dal, M., El-Mallawany, R., & Kaal, M. R. (2019). Investigation ofthe gamma ray shielding parameters of (100-x)[0.5Li2O0.1B2O30.4P2O5]-xTeO2 glasses using Geant4 and FLUKA codes. Journal of Non-Crystalline Solids, 521(May). https://doi.org/10.1016/j.jnoncrysol.2019.119489 DOI: https://doi.org/10.1016/j.jnoncrysol.2019.119489
Bagheri, R., Moghaddam, A. K., Shirmardi, S. P., Azadbakht, B., & Salehi, M. (2018). Determination of gamma-ray shielding properties for silicate glasses containing Bi2O3, PbO, and BaO. Journal of Non-Crystalline Solids, 479(October), 6271. https://doi.org/10.1016/j.jnoncrysol.2017.10.006 DOI: https://doi.org/10.1016/j.jnoncrysol.2017.10.006
Baltas, H., Sirin, M., Celik, A., Ustabas, & El-Khayatt, A. M. (2019). Radiation shielding properties of mortars with minerals and ores additives. Cement and Concrete Composites, 97(January), 268278. https://doi.org/10.1016/j.cemconcomp.2019.01.006 DOI: https://doi.org/10.1016/j.cemconcomp.2019.01.006
Basha, B., Alsufyani, S. J., Olarinoye, I. O., Alrowaili, Z. A., Sadeq, M. S., Misbah, M. H., Rammah, Y. S., Abouhaswa, A. S., & Al-Buriahi, M. S. (2023). Synthesis, physical, optical, and radiation attenuation efficiency of Bi2O3+SrF2+Li2O glass system. Journal of Radiation Research and Applied Sciences, 16(4), 100676. https://doi.org/10.1016/j.jrras.2023.100676 DOI: https://doi.org/10.1016/j.jrras.2023.100676
Berger, M., & Hubbell, J. H. (1987). XCOM: Photon cross sections on a personal computer. National Bureau of Standards, Washington, DC (USA). Center for Radiation Research, 128. http://www.pma.caltech.edu/~dons/ph3-7/wave/phapps/xcom/xcom.doc DOI: https://doi.org/10.2172/6016002
Chai, F., Wang, G., Liu, F., Jiang, D., Yao, C., Xu, T., & Dai, Y. (2020). Preparation and properties of flame-retardant neutron shielding material based on EVA polymer reinforced by radiation modification. Radiation Physics and Chemistry, 174(April), 108984. https://doi.org/10.1016/j.radphyschem.2020.108984 DOI: https://doi.org/10.1016/j.radphyschem.2020.108984
Chen, L. T., Mao, J. J., Mao, Y. N., Zhang, X. Y., Sun, M. L., Wang, T. T., Wang, T. S., & Peng, H. B. (2021). Changes in macroscopic and microscopic properties of borosilicate glass irradiated with ions. Radiation Effects and Defects in Solids, 176(910), 789803. https://doi.org/10.1080/10420150.2021.1955253 DOI: https://doi.org/10.1080/10420150.2021.1955253
Desouky, O., Ding, N., & Zhou, G. (2015). Targeted and non-targeted effects of ionizing radiation. Journal of Radiation Research and Applied Sciences, 8(2), 247254. https://doi.org/10.1016/j.jrras.2015.03.003 DOI: https://doi.org/10.1016/j.jrras.2015.03.003
Fakher Alfahed, R. K., Mohammad, K. K., Majeed, M. S., Ali Badran, H., Ali, K. M., & Yahya Kadem, B. (2019). Preparation, morphological, and mechanical characterization of titanium dioxide (TiO2)/polyvinyl alcohol (PVA) composite for gamma-rays radiation shielding. Journal of Physics: Conference Series, 1279(1). https://doi.org/10.1088/1742-6596/1279/1/012019 DOI: https://doi.org/10.1088/1742-6596/1279/1/012019
Jamal, N., Natasha, M., Aida, N., & Amin, B. (2020). Tungsten-based material as promising new lead-free gamma radiation shielding material in nuclear medicine. Physica Medica, 78(July), 4857. https://doi.org/10.1016/j.ejmp.2020.08.017 DOI: https://doi.org/10.1016/j.ejmp.2020.08.017
Kolavekar, S. B., Ayachit, N. H., Jagannath, G., NagaKrishnakanth, K., & Venugopal Rao, S. (2018). Optical, structural and Near-IR NLO properties of gold nanoparticles doped sodium zinc borate glasses. Optical Materials, 83(May), 3442. https://doi.org/10.1016/j.optmat.2018.05.083 DOI: https://doi.org/10.1016/j.optmat.2018.05.083
Mhareb, M. H. A., Alajerami, Y. S. M., Sayyed, M. I., Dwaikat, N., Alqahtani, M., Alshahri, F., Saleh, N., Alonizan, N., Ghrib, T., & Al-Dhafar, S. I. (2020). Radiation shielding, structural, physical, and optical properties for a series of borosilicate glass. Journal of Non-Crystalline Solids, 550(August), 120360. https://doi.org/10.1016/j.jnoncrysol.2020.120360 DOI: https://doi.org/10.1016/j.jnoncrysol.2020.120360
Mostafa, A. M. A., Elbashir, B. O., Issa, S. A. M., Uosif, M. A. M., Ene, A., Algethami, M., Bawazeer, O., El Agammy, E. F., & Zakaly, H. M. H. (2022). Influence of combining Al2O3, La2O3, Gd2O3, and Dy2O3with barium borosilicate glass-ceramics: A case study of gamma radiation interaction parameters. Journal of Materials Research and Technology, 19, 19721981. https://doi.org/10.1016/j.jmrt.2022.05.095 DOI: https://doi.org/10.1016/j.jmrt.2022.05.095
Okada, T., Saito, J. ichi, Namie, M., & Nishimura, F. (2025). Synthesis of dilute acid-soluble platinum compounds in molten KOH-B2O3 medium. Materials Today Communications, 42(November 2024). https://doi.org/10.1016/j.mtcomm.2024.111244 DOI: https://doi.org/10.1016/j.mtcomm.2024.111244
Othman, A. M., Abd El-Fattah, Z. M., Farouk, M., Moneep, A. M., & Hassan, M. A. (2021). Optical spectroscopy of chromium doped bismuth-lithium borate glasses. Journal of Non-Crystalline Solids, 558(February), 120665. https://doi.org/10.1016/j.jnoncrysol.2021.120665 DOI: https://doi.org/10.1016/j.jnoncrysol.2021.120665
akar, E., zpolat, . F., Alm, B., Sayyed, M. I., & Kurudirek, M. (2020). Phy-X / PSD: Development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiation Physics and Chemistry, 166, 108496. https://doi.org/10.1016/j.radphyschem.2019.108496 DOI: https://doi.org/10.1016/j.radphyschem.2019.108496
Sayyed, M. I., Tekin, H. O., Klcoglu, O., Agar, O., & Zaid, M. H. M. (2018). Shielding features of concrete types containing sepiolite mineral: Comprehensive study on experimental, XCOM and MCNPX results. Results in Physics, 11(August), 4045. https://doi.org/10.1016/j.rinp.2018.08.029 DOI: https://doi.org/10.1016/j.rinp.2018.08.029
Stone, H. B., Coleman, C. N., Anscher, M. S., & McBride, W. H. (2003). Effects of radiation on normal tissue: Consequences and mechanisms. Lancet Oncology, 4(9), 529536. https://doi.org/10.1016/S1470-2045(03)01191-4 DOI: https://doi.org/10.1016/S1470-2045(03)01191-4
Ummah, M. S. (2019). evaluation of radiation shielding integrity of fabricated concrete with some selected aggregate sizes. fudma journal of science, 11(1), 114. https://fjs.fudutsinma.edu.ng/index.php/fjs/article/view/1525/1188
Yonphan, S., Limkitjaroenporn, P., Borisut, P., Kothan, S., Wongdamnern, N., Alhuthali, A. M. S., Sayyed, M. I., & Kaewkhao, J. (2021). The photon interactions and build-up factor for gadolinium sodium borate glass: Theoretical and experimental approaches. Radiation Physics and Chemistry, 188(January), 109561. https://doi.org/10.1016/j.radphyschem.2021.109561 DOI: https://doi.org/10.1016/j.radphyschem.2021.109561
Copyright (c) 2025 FUDMA JOURNAL OF SCIENCES

This work is licensed under a Creative Commons Attribution 4.0 International License.
FUDMA Journal of Sciences