MACHINE LEARNING APPLICATIONS IN EXOPLANET DETECION: FROM KEPLER TO TESS

  • Mu'allim Yakubu Department of Industrial Physics, Enugu State University of Science and Technology, Enugu
  • Jude Oruaode Vwavware Dennis Osadebay University, Asaba
  • Ohwofosirai Adrian Dennis Osadebay University, Asaba
  • Akpoyibo Ogheneovo Dennis Osadebay University, Asaba
Keywords: Machine Learning, Exoplanet Detection, TESS Mission, Kepler Mission, Deep Learning

Abstract

The detection and classification of exoplanets have undergone a paradigm shift with the advent of space missions like Kepler and TESS, which generate vast volumes of photometric time-series data. Traditional detection techniques, while foundational, struggle with scalability and sensitivity in the face of increased data complexity. This review synthesizes advancements in machine learning (ML) methods applied to exoplanet detection between 2007 and 2023, focusing on data from the Kepler and TESS missions. Key findings reveal that ML models particularly 2D convolutional neural networks (CNNs) applied to phase-folded light curves achieve superior performance (accuracy: 93–98%, AUC: 0.97 for Kepler) compared to traditional pipelines, though mission-specific noise (e.g., TESS’s shorter baselines) degrades performance (AUC: 0.85). Hybrid approaches combining synthetic and real data improve generalizability, while ensemble methods mitigate false positives from stellar variability (e.g., flares). However, challenges persist in interpretability, reproducibility, and cross-mission adaptability. Recommendations include: (1) Standardized benchmarks for ML model evaluation across missions, (2) Integration of noise-invariant architectures (e.g., attention mechanisms) for future surveys like PLATO, and (3) Ethical frameworks to ensure transparency in automated discovery pipelines. ML’s transformative potential is clear, but its integration requires addressing these gaps to fully leverage upcoming exoplanet surveys.

References

Aigrain, S., and Pont, F. (2007). On the potential of transit surveys in star clusters: Impact of correlated noise and radial velocity follow-up. Monthly Notices of the Royal Astronomical Society, 378(3), 741-752. https://doi.org/10.1111/j.1365-2966.2007.11823.x

Barclay, T., and Barentsen, G. (2018). A Catalog of Stars Observed Simultaneously by Kepler and TESS. Research Notes of the AAS, 2.

Borucki, W.J. (2016). Kepler Mission: development and overview. Reports on Progress in Physics, 79.

Borucki, W.J., Koch, D.G., Basri, G., Batalha, N.M., Brown, T.M., Caldwell, D.A., Christensen-Dalsgaard, J., Cochran, W.D., Dunham, E.W., Gautier, T., Geary, J.C., Gilliland, R.L., Jenkins, J.M., Kondo, Y., Latham, D.W., Lissauer, J.J., and Monet, D.G. (2007). Finding Earth-size planets in the habitable zone: the Kepler Mission. Proceedings of the International Astronomical Union, 3, 17 - 24.

Buremoh, B. S., Ezenwora, J. A., and Moses, A. S. (2025). Assessment of solar energy potentials in parts of North Central Nigeria using geospatial method. FUDMA Journal of Sciences, 9(Special Issue), 189-194. https://doi.org/10.33003/fjs-2025-09 (AHBSJ)-3464

Chintarungruangchai, P., and Jiang, I. (2019). Detecting exoplanet transits through machine-learning techniques with convolutional neural networks. Publications of the Astronomical Society of the Pacific. https://arxiv.org/pdf/1904.12419

Clery, D. (2018). New missions aim to make a short list of exo-Earths. Science, 359 6383, 1453 .

Cuéllar, S., Granados, P., Fábrega, E., Curé, M., Vargas, H., Dormido-Canto, S., and Farías, G. (2021). Deep learning exoplanets detection by combining real and synthetic data. PLoS ONE, 16(6), e0252448. https://doi.org/10.1371/journal.pone.0252448

Cuoco, E., Powell, J., Cavaglià, M., Ackley, K., Bejger, M., Chatterjee, C., Coughlin, M., Coughlin, S., Easter, P., Essick, R., Gabbard, H., Gebhard, T. D., Ghosh, S., Haegel, L., Iess, A., Keitel, D., Márka, Z., Márka, S., Morawski, F., Nguyen, T., Ormiston, R., Pürrer, M., Razzano, M., Staats, K., Vajente, G., and Williams, D. (2021). Enhancing gravitational-wave science with machine learning. Machine Learning: Science and Technology, 2(1), 011002. https://doi.org/10.1088/2632-2153/abb93a

Fluke, C. J., and Jacobs, C. (2019). Surveying the reach and maturity of machine learning and artificial intelligence in astronomy. WIREs Data Mining and Knowledge Discovery. arXiv:1912.02934.

Ge, J., Zhang, H., Deng, H., Howell, S. B., and the ET team. (2022). The ET mission to search for Earth 2.0s. The Innovation, 3(4), 100271. https://doi.org/10.1016/j.xinn.2022.100271

Gural, P. (2019). Deep Learning Algorithms Applied to the Classification of Video Meteor Detections. Monthly Notices of the Royal Astronomical Society.

Howell, S. B., Sobeck, C., Haas, M., Still, M., Barclay, T., Mullally, F., Troeltzsch, J., Aigrain, S., Bryson, S. T., Caldwell, D., Chaplin, W. J., Cochran, W. D., Huber, D., Marcy, G. W., Miglio, A., Najita, J. R., Smith, M., Twicken, J. D., and Fortney, J. J. (2014). The K2 Mission: Characterization and early results. Publications of the Astronomical Society of the Pacific, 126(938), 398-408. https://doi.org/10.1086/676406

Jude, V. O., Yakubu, M., Raymond, O. E., and Okechukwu, O. A. (2024). An investigation into the galactic origins of the Milky Way's farthest stars. Standard Scientific Research and Essays, 12(5), 155-161. https://doi.org/10.15413/ssre.2024.0160

Johnson, J. A. (2009). International Year of Astronomy invited review on exoplanets. Publications of the Astronomical Society of the Pacific, 121(880), 309–315.

Kalavathi Devi, T., Priyanka, E.B., and Sakthivel, P. (2023). Paper quality enhancement and model prediction using machine learning techniques. Results in Engineering.

Kane, S. R. (2007). Detectability of exoplanetary transits from radial velocity surveys. Monthly Notices of the Royal Astronomical Society, 380(4), 1488-1496. https://doi.org/10.1111/j.1365-2966.2007.12144.x

Kremer, J., Stensbo-Smidt, K., Gieseke, F., Pedersen, K.S., and Igel, C. (2017). Big Universe, Big Data: Machine Learning and Image Analysis for Astronomy. IEEE Intelligent Systems, 32, 16-22.

Leleu, A., Robutel, P., Correia, A. C. M., and Lillo-Box, J. (2017). Detection of co-orbital planets by combining transit and radial-velocity measurements. Astronomy and Astrophysics, 599, L7. https://doi.org/10.1051/0004-6361/201630073

Lissauer, J. J., Dawson, R. I., and Tremaine, S. (2014). Advances in exoplanet science from Kepler. Nature, 513(7518), 336-344. https://doi.org/10.1038/nature13781

Published
2025-07-20
How to Cite
Yakubu, M., Vwavware, J. O., Adrian, O., & Ogheneovo, A. (2025). MACHINE LEARNING APPLICATIONS IN EXOPLANET DETECION: FROM KEPLER TO TESS. FUDMA JOURNAL OF SCIENCES, 9(7), 215 - 221. https://doi.org/10.33003/fjs-2025-0907-3478