VARIABLE THERMOPHYSICAL PROPERTY AND OHMIC HEATING IMPACT ON RADIATIVE CASSON FLUID FLOW PAST A STRETCHING CYLINDER

  • Adebayo Stephen Oladoja Modibbo Adama University, Yola
  • Damilare John Samuel Mathematics Department, East Palmyra Christian School, New York
  • Yusuf Buba Chukkol Modibbo Adama University, Yola
Keywords: Variable thermophysical properties, Casson fluid, Thermal radiation, MHD fluid, Stretching cylinder, Radiative heat transfer

Abstract

This study investigates the effect of variable thermophysical properties on radiative Casson fluid flow around a stretching cylinder. The governing partial differential equations for momentum and energy are changed into ordinary differential equations with suitable similarity transformations. Our mathematical model analyses the impact of variable thermal conductivity, viscosity, and radiation parameters on the fluid flow system. The resulting coupled nonlinear equations are solved numerically using the Runge-Kutta fourth-order method with shooting technique. The effect of key parameters including Casson fluid parameter, thermal radiation parameter, magnetic parameter, Grashof number, Prandtl number, Eckert number, ohmic heating parameter and Biot number on velocity and temperature profiles is examined. Results indicate that increasing the Casson parameter reduces fluid velocity while increasing the temperature distribution. The thermal boundary layer thickness is seriously affected by the radiation parameter and variable thermal conductivity. In addition, the study reveals that heat transfer rates at the surface increase with higher values of the Biot number. These findings provide valuable insights into heat transfer optimization in industrial applications involving non-Newtonian fluids with radiative effects and variable properties.

References

Abbas, S., Nisa, Z. U., Nazar, M., Amjad, M., Ali, H., & Jan, A. Z. (2024). Application of heat and mass transfer to convective flow of Casson fluids in a microchannel with CaputoFabrizio derivative approach. Arabian Journal for Science and Engineering, 49(1), 1275-1286. DOI: https://doi.org/10.1007/s13369-023-08351-1

Adegbie, K., Samuel, D.J., and Ajayi, B.O., Ohmic Heating of Magnetohydrodynamic Viscous Flow over a Continuous Moving Plate with Viscous Dissipation Buoyancy and Thermal Radiation, Defect Diffusion Forum, 392, 73-91, 2019. DOI: https://doi.org/10.4028/www.scientific.net/DDF.392.73

Aina, B. (2020). Thermal Radiation Effect on Fully Developed Natural Convection Flow in a Vertical Micro-Channel. Nigerian Journal of Basic and Applied Sciences, 28(2), 20-28. DOI: https://doi.org/10.4314/njbas.v28i2.3

Al-Hanaya, A., Alotaibi, M., Shqair, M., & Hagag, A. E. (2023). MHD effects on Casson fluid flow squeezing between parallel plates. AIMS Mathematics, 8(12), 29440-29452. DOI: https://doi.org/10.3934/math.20231507

Ali, F. M., Nazar, R., Arifin, N. M., & Pop, I. (2011). Effect of Hall current on MHD mixed convection boundary layer flow over a stretched vertical flat plate. Meccanica, 46, 1103-1112. DOI: https://doi.org/10.1007/s11012-010-9371-3

Ali, H., Shabir, G., Ahmad, Z., Qayyum, Y., & Qayyum, A. (2023). Mixed Convection in a Casson Fluid Flow towards a Heated Shrinking Surface. Earthline Journal of Mathematical Sciences, 13(2), 413-429. DOI: https://doi.org/10.34198/ejms.13223.413429

Alqarni, M. M., Bilal, M., Allogmany, R., Tag-Eldin, E., Ghoneim, M. E., & Yassen, M. F. (2022). Mathematical analysis of casson fluid flow with energy and mass transfer under the influence of activation energy from a non-coaxially spinning disc. Frontiers in Energy Research, 10, 986284. DOI: https://doi.org/10.3389/fenrg.2022.986284

Arthur, E. M., Seini, I. Y., & Bortteir, L. B. (2015). Analysis of Casson fluid flow over a vertical porous surface with chemical reaction in the presence of magnetic field. Journal of applied mathematics and physics, 3(6), 713-723. DOI: https://doi.org/10.4236/jamp.2015.36085

Asogwa, K. K., & Ibe, A. A. (2020). A study of MHD Casson fluid flow over a permeable stretching sheet with heat and mass transfer. Journal of Engineering Research and Reports, 16(2), 10-25. DOI: https://doi.org/10.9734/jerr/2020/v16i217161

Cuevas, J. C. (2019). Thermal radiation from subwavelength objects and the violation of Plancks law. Nature communications, 10(1), 3342. DOI: https://doi.org/10.1038/s41467-019-11287-6

Dehghan A. M., Jalili, B., Mirzaei, A., Jalili, P., & Ganji, D. (2025). The effects of thermal radiation, thermal conductivity, and variable viscosity on ferrofluid in porous medium under magnetic field. World Journal of Engineering, 22(1), 218-231. DOI: https://doi.org/10.1108/WJE-09-2023-0402

Durojaye, M. O., Jamiu, K. A., & Ajala, I. O. (2019) The Effects of Some Thermo-physical Properties of Fluid on Heat and Mass Transfer Flow Past Semi-infinite Moving Vertical Plate with Viscous Dissipation. DOI: https://doi.org/10.9734/jerr/2019/v8i216985

Eldabe, N. T., Elbashbeshy, E. M. A., & Elsaid, E. M. (2013). Effects of thermal radiation and magnetic field on heat transfer in a micropolar fluid along a vertical stretching surface with a variable viscosity and internal heat generation. Int. Res. J. Eng. Sci., Technol. Innov. (IRJESTI) Vol, 2(1), 8-16.

Elgendi, S. G., Abbas, W., Said, A. A., Megahed, A. M., & Fares, E. (2024). Computational Analysis of the Dissipative Casson Fluid Flow Originating from a Slippery Sheet in Porous Media. Journal of Nonlinear Mathematical Physics, 31(1), 19. DOI: https://doi.org/10.1007/s44198-024-00183-3

Jamalabadi, M. A., & Park, J. H. (2014). Thermal radiation, joule heating, and viscous dissipation effects on MHD forced convection flow with uniform surface temperature. Open Journal of Fluid Dynamics, 2014. DOI: https://doi.org/10.4236/ojfd.2014.42011

Kalsi, S., Kumar, S., Kumar, A., Alam, T., & Dobrot, D. (2023). Thermophysical properties of nanofluids and their potential applications in heat transfer enhancement: A review. Arabian Journal of Chemistry, 16(11), 105272. DOI: https://doi.org/10.1016/j.arabjc.2023.105272

Kanthimathi, T., Bhramara, P., Atgur, V., Rao, B. N., Banapurmath, N. R., Sajjan, A. M., ... & Krishnappa, S. (2024). Correction: Thermophysical properties and heat transfer in mono and hybrid nanofluids with different base fluids. Journal of Thermal Analysis and Calorimetry, 149(10), 5089-5089. DOI: https://doi.org/10.1007/s10973-024-12935-w

Koriko, O. K. (2018). On the Analysis of Variable Thermophysical Properties of Thermophoretic Viscoelastic Fluid Flow past a Vertical Surface with nth Order of Chemical Reaction. Open Access Library Journal, 5(06), 1. DOI: https://doi.org/10.4236/oalib.1104271

Latini, G. (2017). Thermophysical properties of fluids: dynamic viscosity and thermal conductivity. In Journal of Physics: Conference Series (Vol. 923, No. 1, p. 012001). DOI: https://doi.org/10.1088/1742-6596/923/1/012001

Patel, H. R. (2021). Thermal radiation effects on MHD flow with heat and mass transfer of micropolar fluid between two vertical walls. International Journal of Ambient Energy, 42(11), 1281-1296. DOI: https://doi.org/10.1080/01430750.2019.1594371

Rao, J. A., Vasumathi, G., & Mounica, J. (2015). Joule heating and thermal radiation effects on MHD boundary layer flow of a nanofluid over an exponentially stretching sheet in a porous medium. World Journal of Mechanics, 5(9), 151-164. DOI: https://doi.org/10.4236/wjm.2015.59016

Rudyak, V. Y., & Minakov, A. V. (2018). Thermophysical properties of nanofluids. The European Physical Journal E, 41, 1-12. DOI: https://doi.org/10.1140/epje/i2018-11616-9

Samuel, D. J. (2022). Numerical Investigations of Thermal Radiation and Activation Energy Imparts on Chemically Reactive Maxwell Fluid Flow Over an Exothermal Stretching Sheet in a Porous Medium. Int. J. Appl. Comput. Math 8, 148. DOI: https://doi.org/10.1007/s40819-022-01356-8

Samuel, D. J., & Ajayi, B. O. (2018). The effects of thermo-physical parameters on free convective flow of a chemically reactive power law fluid driven by exothermal plate. Chem. biomol. eng., 3(3), 22-34. DOI: https://doi.org/10.11648/j.cbe.20180303.12

Samuel, D. J., & Oladoja, A. (2023). Natural convection flow of radiative Casson fluid past a stretching cylindrical surface in a porous medium with applied magnetic field and Joule heating. Defect and Diffusion Forum 424, 3-17. DOI: https://doi.org/10.4028/p-6mf230

Samuel, D. J., & Olajuwon, B. I. (2022). Insight into the effects of thermal radiation and Ohmic heating on chemically reactive Maxwell fluid subject to Lorentz force and buoyancy force. Journal of the Nigerian Mathematical Society, 41(1), 27-48.

Samuel, D.J., Fayemi, I.A. (2023). Impacts of variable viscosity and chemical reaction on Ohmic dissipative fluid flow in a porous medium over a stretching sheet with thermal radiation. Heat Transf. 52(7), 50225040. DOI: https://doi.org/10.1002/htj.22915

Shah, S. A. G. A., Hassan, A., Karamti, H., Alhushaybari, A., Eldin, S. M., & Galal, A. M. (2023). Effect of thermal radiation on convective heat transfer in MHD boundary layer Carreau fluid with chemical reaction. Scientific Reports, 13(1), 4117. DOI: https://doi.org/10.1038/s41598-023-31151-4

Shateyi, S., & Motsa, S. S. (2009). Thermal radiation effects on heat and mass transfer over an unsteady stretching surface. Mathematical Problems in Engineering, 2009(1), 965603. DOI: https://doi.org/10.1155/2009/965603

Singh, J., Vishalakshi, A. B., Mahabaleshwar, U. S., & Bognar, G. (2022). MHD Casson fluid flow with Naviers and second order slip due to a perforated stretching or shrinking sheet. Plos one, 17(11), e0276870. DOI: https://doi.org/10.1371/journal.pone.0276870

Sobamowo, M. G. (2018). Combined effects of thermal radiation and nanoparticles on free convection flow and heat transfer of casson fluid over a vertical plate. International Journal of Chemical Engineering, 2018(1), 7305973. DOI: https://doi.org/10.1155/2018/7305973

Yusuf, A. B., & Abdullahi, F. (2024). influence of temperature dependent viscosity, viscous dissipation and joule heating on mhd natural convection flow: a semi analytical approach. fudma journal of sciences, 8(6), 36-41. DOI: https://doi.org/10.33003/fjs-2024-0806-3045

Zainon, S. N. M., & Azmi, W. H. (2021). Recent progress on stability and thermo-physical properties of mono and hybrid towards green nanofluids. Micromachines, 12(2), 176. DOI: https://doi.org/10.3390/mi12020176

Published
2025-05-31
How to Cite
Oladoja, A. S., Samuel, D. J., & Chukkol, Y. B. (2025). VARIABLE THERMOPHYSICAL PROPERTY AND OHMIC HEATING IMPACT ON RADIATIVE CASSON FLUID FLOW PAST A STRETCHING CYLINDER. FUDMA JOURNAL OF SCIENCES, 9(5), 155 - 163. https://doi.org/10.33003/fjs-2025-0905-3476