RECENT ADVANCES IN CEMENT CHEMISTRY AND APPLICATIONS: A REVIEW

  • Ikechkwu O. Alisi Industrial Chemistry Department, Federal University Dutsin-Ma
  • Abubakar Musa Federal Polytechnic Daura
  • Adikwu G. Jacob Federal University Dutsin-Ma
Keywords: Cement chemistry, Limestone, Concrete, Portland cement, Cement production, Clinker formation

Abstract

This study provides a survey of the chemistry and applications of the various kinds of cement produced by various industries in recent times.  Cement-based products are widely used in the construction of buildings, roads, bridges and oil well drilling. The primary components of cement are limestone, clay and shale. Cement forms a composite known as mortar when mixed with water and sand. When mixed with water, sand and gravel it forms concrete. There are various types of cement produced and marketed worldwide. Ordinary Portland cement is the most widely used type of cement in various construction works. This cement is a fine grey/white powder consisting of a mixture of calcium silicates, aluminates, and aluminoferrites. It is a mixture of different inorganic oxides such as CaO, SiO2, Al2O3 and Fe2O3, The ability to understand the different properties of the various types of cement helps one to make informed decision when selecting materials for a particular application.

References

Abraham, R., Neelakantan, T. R., Chokkalingam, R. B., & John, E. (2021). Blended Cement Using Calcined Clay and Limestone for Sustainable Development---A Review. In K. Dasgupta, T. K. Sudheesh, K. I. Praseeda, G. Unni Kartha, P. E. Kavitha, & S. Jawahar Saud (Eds.), Proceedings of SECON 2020 (pp. 701710). Springer International Publishing. DOI: https://doi.org/10.1007/978-3-030-55115-5_64

Adesina, A. (2020). Recent advances in the concrete industry to reduce its carbon dioxide emissions. Environmental Challenges, 1, 100004. https://doi.org/10.1016/j.envc.2020.100004 DOI: https://doi.org/10.1016/j.envc.2020.100004

Adesina, A., & Zhang, J. (2024). Impact of concrete structures durability on its sustainability and climate resiliency. Next Sustainability, 3, 100025. https://doi.org/10.1016/j.nxsust.2024.100025 DOI: https://doi.org/10.1016/j.nxsust.2024.100025

Adjei, S., & Elkatatny, S. (2021). Overview of the lightweight oil-well cement mechanical properties for shallow wells. Journal of Petroleum Science and Engineering, 198, 108201. https://doi.org/10.1016/j.petrol.2020.108201 DOI: https://doi.org/10.1016/j.petrol.2020.108201

Ahmed, A. (2019a). Chemical Reactions in Pozzolanic Concrete. Modern Approaches on Material Science, 1(4), 128133. https://doi.org/10.32474/mams.2019.01.000120 DOI: https://doi.org/10.32474/MAMS.2019.01.000120

Ahmed, A. (2019b). Potential of Rice Husk Ash as a Partial Cement Substitute in Rigid Highway Pavements. Research & Development in Material Science, 9(3), 10191024. https://doi.org/10.31031/rdms.2019.09.000715 DOI: https://doi.org/10.31031/RDMS.2019.09.000715

Al-Jabari, M. (2022). 3 - Concrete durability problems: physicochemical and transport mechanisms. In M. Al-Jabari (Ed.), Integral Waterproofing of Concrete Structures (pp. 69107). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-824354-1.00003-9 DOI: https://doi.org/10.1016/B978-0-12-824354-1.00003-9

Al-Jabari, M., Al-Rashed, R., & Ayers, M. E. (2023). Mitigation of alkali silica reactions in concrete using multi-crystalline intermixed waterproofing materials. CEMENT, 12, 100065. https://doi.org/10.1016/j.cement.2023.100065 DOI: https://doi.org/10.1016/j.cement.2023.100065

Alexander, M., & Beushausen, H. (2019). Durability, service life prediction, and modelling for reinforced concrete structures review and critique. Cement and Concrete Research, 122, 1729. https://doi.org/10.1016/j.cemconres.2019.04.018 DOI: https://doi.org/10.1016/j.cemconres.2019.04.018

Alsadey, S., & Said Aljenkawi, A. (2021). Retarder Chemical Admixture: A Major Role in Modern Concrete Materials. International Journal of Materials Chemistry and Physics, 7(1), 14. http://www.aiscience.org/journal/ijmcp

Anameje, C., Inyang, M., Elebe, I., & Shailong, S. (2023). Mineralogical studies of tertiary shales from k-well Akiri field, Niger delta. World Journal of Advanced Research and Reviews, 20, 126131. https://doi.org/10.30574/wjarr.2023.20.2.2207 DOI: https://doi.org/10.30574/wjarr.2023.20.2.2207

Aragaw, T. A. (2018). Raw Materials and Their Components for Cement Production. In Concise Introduction to Cement Chemistry and Manufacturing (pp. 35). Springer International Publishing. https://doi.org/10.1007/978-3-031-79386-82 DOI: https://doi.org/10.1007/978-3-031-79386-8_2

Bansal, P., Choudhary, S., Taneja, T., Sangwan, S., Gupta, B., Goyal, S., Kumar, R., & Sharma, P. (2016). We are IntechOpen , the world s leading publisher of Open Access books Built by scientists , for scientists TOP 1 %. Intech, i(tourism), 15. https://www.intechopen.com/books/advanced-biometric-technologies/liveness-detection-in-biometrics

Barbhuiya, S., Kanavaris, F., Das, B. B., & Idrees, M. (2024). Decarbonising cement and concrete production: Strategies, challenges and pathways for sustainable development. Journal of Building Engineering, 86, 108861. https://doi.org/10.1016/j.jobe.2024.108861 DOI: https://doi.org/10.1016/j.jobe.2024.108861

Bonewitz, R. (2012). Rocks and Minerals. DK Publishing. https://books.google.com.ng/books?id=S1OMtgAACAAJ

Bustillo Revuelta, M. (2021). Concrete. In Construction Materials: Geology, Production and Applications (pp. 217274). Springer International Publishing. https://doi.org/10.1007/978-3-030-65207-4_9 DOI: https://doi.org/10.1007/978-3-030-65207-4_9

Bustillo Revuelta, M. (2024). Applications. In The Basics of Aggregates (pp. 259304). Springer International Publishing. https://doi.org/10.1007/978-3-031-42961-3_8 DOI: https://doi.org/10.1007/978-3-031-42961-3_8

Cadix, A., & James, S. (2022). Chapter 5 - Cementing additives. In Q. Wang (Ed.), Fluid Chemistry, Drilling and Completion (pp. 187254). Gulf Professional Publishing. https://doi.org/10.1016/B978-0-12-822721-3.00008-3 DOI: https://doi.org/10.1016/B978-0-12-822721-3.00008-3

Casella, L. A., Simonet Roda, M. D. M., Angiolini, L., Ziegler, A., Schmahl, W. W., Brand, U., & Griesshaber, E. (2018). Archival biogenic micro- and nanostructure data analysis: Signatures of diagenetic systems. Data in Brief, 19, 299311. https://doi.org/10.1016/j.dib.2018.05.041 DOI: https://doi.org/10.1016/j.dib.2018.05.041

Clarke, L., & Sahin-Dikmen, M. (2020). Unions and the green transition in construction in Europe: Contrasting visions. European Journal of Industrial Relations, 26(4), 401418. https://doi.org/10.1177/0959680120951705 DOI: https://doi.org/10.1177/0959680120951705

CSI-ECRA. (2017). Development of State of the Art-Techniques in Cement Manufacturing: Trying to Look Ahead. Technology Papers, March, 190.

de Brito, J., & Kurda, R. (2021). The past and future of sustainable concrete: A critical review and new strategies on cement-based materials. Journal of Cleaner Production, 281, 123558. https://doi.org/10.1016/j.jclepro.2020.123558 DOI: https://doi.org/10.1016/j.jclepro.2020.123558

de Queiroz Lamas, W.; Palau, J.C.F.; de Camargo, J.R. Waste Materials Co-Processing in Cement Industry: Ecological Efficiency of Waste Reuse. Renew. Sustain. Energy Rev. 2013, 19, 200207. DOI: https://doi.org/10.1016/j.rser.2012.11.015

Desharnais, G. (2019). Manuel Bustillo Revuelta: Mineral resources, from exploration to sustainability assessment, first edition. Earth sciences, textbook geography and environment Springer, (2019), 653 p. Mineralium Deposita, 54(8), 12811283. https://doi.org/10.1007/s00126-019-00901-8 DOI: https://doi.org/10.1007/s00126-019-00901-8

Do, T. A., Hoang, T. T., Bui-Tien, T., Hoang, H. V., Do, T. D., & Nguyen, P. A. (2020). Evaluation of heat of hydration, temperature evolution and thermal cracking risk in high-strength concrete at early ages. Case Studies in Thermal Engineering, 21, 100658. https://doi.org/10.1016/j.csite.2020.100658 DOI: https://doi.org/10.1016/j.csite.2020.100658

Elahi, M. M. A., Shearer, C. R., Naser Rashid Reza, A., Saha, A. K., Khan, M. N. N., Hossain, M. M., & Sarker, P. K. (2021). Improving the sulfate attack resistance of concrete by using supplementary cementitious materials (SCMs): A review. Construction and Building Materials, 281, 122628. https://doi.org/10.1016/j.conbuildmat.2021.122628 DOI: https://doi.org/10.1016/j.conbuildmat.2021.122628

Fanijo, E. O., Kolawole, J. T., & Almakrab, A. (2021). Alkali-silica reaction (ASR) in concrete structures: Mechanisms, effects and evaluation test methods adopted in the United States. Case Studies in Construction Materials, 15, e00563. https://doi.org/10.1016/j.cscm.2021.e00563 DOI: https://doi.org/10.1016/j.cscm.2021.e00563

Figueira, R. B., Sousa, R., Coelho, L., Azenha, M., de Almeida, J. M., Jorge, P. A. S., & Silva, C. J. R. (2019). Alkali-silica reaction in concrete: Mechanisms, mitigation and test methods. Construction and Building Materials, 222, 903931. https://doi.org/10.1016/j.conbuildmat.2019.07.230 DOI: https://doi.org/10.1016/j.conbuildmat.2019.07.230

Gandage, A. (2023). Admixtures in Concrete -A Review.

Gao, X., & Ash, F. (2023). Review: Development Trends in the Reuse of Waste Materials in Concrete Production. 8(2), 26. DOI: https://doi.org/10.54097/ajst.v8i2.14714

Ghosal, M., & Kumar Chakraborty, A. (2022). Superplasticizer compatibility with cement properties A study. Materials Today: Proceedings, 56, 568573. https://doi.org/10.1016/j.matpr.2022.02.386 DOI: https://doi.org/10.1016/j.matpr.2022.02.386

Guindani, E. N., Onghero, L., Souza, M. T., Cheriaf, M., & Rocha, J. C. (2024). Assessing the interactions of retarding admixtures and fine materials in long-term flowability of cement pastes. Case Studies in Construction Materials, 20, e02896. https://doi.org/10.1016/j.cscm.2024.e02896 DOI: https://doi.org/10.1016/j.cscm.2024.e02896

Hammerl, M., & Kromoser, B. (2021). The influence of pretensioning on the load-bearing behaviour of concrete beams reinforced with carbon fibre reinforced polymers. Composite Structures, 273, 114265. https://doi.org/10.1016/j.compstruct.2021.114265 DOI: https://doi.org/10.1016/j.compstruct.2021.114265

Hathaway, J. R. (2020). Climate Change, the Intersectional Imperative, and the Opportunity of the Green New Deal. Environmental Communication, 14(1), 1322. https://doi.org/10.1080/17524032.2019.1629977 DOI: https://doi.org/10.1080/17524032.2019.1629977

Hou, J., He, X., & Ni, X. (2022). Hydration mechanism and thermodynamic simulation of ecological ternary cements containing phosphogypsum. Materials Today Communications, 33, 104621. https://doi.org/10.1016/j.mtcomm.2022.104621 DOI: https://doi.org/10.1016/j.mtcomm.2022.104621

Huang, C., Shen, C., Jin, L., & Cai, H. (2018). Determination of Trace Amounts of Hydrofluoric Acid in Non-Aqueous Solutions by the Coulometric Titration Method. Sensors, 18, 4439. https://doi.org/10.3390/s18124439 DOI: https://doi.org/10.3390/s18124439

Ibrahim, H. H., Alshkane, Y. M., Mawlood, Y. I., Noori, K. M. G., & Hasan, A. M. (2020). Improving the geotechnical properties of high expansive clay using limestone powder. Innovative Infrastructure Solutions, 5(3). https://doi.org/10.1007/s41062-020-00366-z DOI: https://doi.org/10.1007/s41062-020-00366-z

Ji, X., Pan, T., Zhao, W., Liu, J., Sha, J., & Han, F. (2023). Interaction of Superplasticizers with C3A: Understanding the Superplasticizer Compatibility with Cement. Journal of Materials in Civil Engineering, 35(9), 4023276. https://doi.org/10.1061/JMCEE7.MTENG-15185 DOI: https://doi.org/10.1061/JMCEE7.MTENG-15185

Jia, Z., Aguiar, J. L., Cunha, S., & Jesus, C. (2023). Green Thermal Aggregates: Influence of the Physical Properties of Recycled Aggregates with Phase Change Materials. Materials, 16, 6267. https://doi.org/10.3390/ma16186267 DOI: https://doi.org/10.3390/ma16186267

John, E., & Lothenbach, B. (2023). Cement hydration mechanisms through time a review. Journal of Materials Science, 58(24), 98059833. https://doi.org/10.1007/s10853-023-08651-9 DOI: https://doi.org/10.1007/s10853-023-08651-9

Juenger, M. C. G., Snellings, R., & Bernal, S. A. (2019). Supplementary cementitious materials: New sources, characterization, and performance insights. Cement and Concrete Research, 122, 257273. https://doi.org/10.1016/j.cemconres.2019.05.008 DOI: https://doi.org/10.1016/j.cemconres.2019.05.008

Kamau, J., & Ahmed, A. (2017). Performance of Ternary Corncob Ash and Anthill Soil Concrete in Sulfate Solutions. European Journal of Engineering Research and Science, 2, 12. https://doi.org/10.24018/ejers.2017.2.9.456 DOI: https://doi.org/10.24018/ejers.2017.2.9.456

Kamau, J., Ahmed, A., & Ngong, K. (2018). Sulfate Resistance of Rice Husk Ash Concrete. MATEC Web of Conferences, 199. https://doi.org/10.1051/matecconf/201819902006 DOI: https://doi.org/10.1051/matecconf/201819902006

Kaplan, G., Yildizel, S. A., Memi, S., & ztrk, A. U. (2018). The Optimization of Calcareous Fly Ash-Added Cement Containing Grinding Aids and Strength-Improving Additives. Advances in Civil Engineering, 2018(1), 8917059. https://doi.org/10.1155/2018/8917059 DOI: https://doi.org/10.1155/2018/8917059

Kazemian, M., & Shafei, B. (2022). Internal curing capabilities of natural zeolite to improve the hydration of ultra-high performance concrete. Construction and Building Materials, 340, 127452. https://doi.org/10.1016/j.conbuildmat.2022.127452 DOI: https://doi.org/10.1016/j.conbuildmat.2022.127452

Khan, M., & Dominic, M. (2021). Sustainability of concrete using recycled aggregate: a review. Sustainability, Agri, Food and Environmental Research, 10. https://doi.org/10.7770/safer-V10N1-art2508 DOI: https://doi.org/10.7770/safer-V10N1-art2508

Krishnya, S., Elakneswaran, Y., & Yoda, Y. (2021). Proposing a three-phase model for predicting the mechanical properties of mortar and concrete. Materials Today Communications, 29, 102858. https://doi.org/10.1016/j.mtcomm.2021.102858 DOI: https://doi.org/10.1016/j.mtcomm.2021.102858

Kupwade-Patil, K., De Wolf, C., Chin, S., Ochsendorf, J., Hajiah, A. E., Al-Mumin, A., & Bykztrk, O. (2018). Impact of Embodied Energy on materials/buildings with partial replacement of ordinary Portland Cement (OPC) by natural Pozzolanic Volcanic Ash. Journal of Cleaner Production, 177, 547554. https://doi.org/10.1016/j.jclepro.2017.12.234 DOI: https://doi.org/10.1016/j.jclepro.2017.12.234

Lavagna, L., & Nistic, R. (2023). An Insight into the Chemistry of CementA Review. Applied Sciences (Switzerland), 13(1). https://doi.org/10.3390/app13010203 DOI: https://doi.org/10.3390/app13010203

Liu, M., Xia, Y., Zhao, Y., & Cao, Z. (2022). Immobilization of Cu (), Ni () and Zn () in silica fume blended Portland cement: Role of silica fume. Construction and Building Materials, 341, 127772. https://doi.org/10.1016/j.conbuildmat.2022.127772 DOI: https://doi.org/10.1016/j.conbuildmat.2022.127772

MacArthur, J. L., Hoicka, C. E., Castleden, H., Das, R., & Lieu, J. (2020). Canadas Green New Deal: Forging the socio-political foundations of climate resilient infrastructure? Energy Research & Social Science, 65, 101442. https://doi.org/10.1016/j.erss.2020.101442 DOI: https://doi.org/10.1016/j.erss.2020.101442

Merlo, A., Lavagna, L., Suarez-Riera, D., & Pavese, M. (2020). Mechanical properties of mortar containing waste plastic (PVC) as aggregate partial replacement. Case Studies in Construction Materials, 13, e00467. https://doi.org/10.1016/j.cscm.2020.e00467 DOI: https://doi.org/10.1016/j.cscm.2020.e00467

Merlo, A., Lavagna, L., Suarez-Riera, D., & Pavese, M. (2021). Recycling of WEEE Plastics Waste in Mortar: The Effects on Mechanical Properties. Recycling, 6(4). https://doi.org/10.3390/recycling6040070 DOI: https://doi.org/10.3390/recycling6040070

Mohamad, N., Muthusamy, K., Embong, R., Kusbiantoro, A., & Hashim, M. H. (2022). Environmental impact of cement production and Solutions: A review. Materials Today: Proceedings, 48, 741746. https://doi.org/10.1016/j.matpr.2021.02.212 DOI: https://doi.org/10.1016/j.matpr.2021.02.212

Mokhtar, A., & Nasooti, M. (2020). A decision support tool for cement industry to select energy efficiency measures. Energy Strategy Reviews, 28, 100458. https://doi.org/10.1016/j.esr.2020.100458 DOI: https://doi.org/10.1016/j.esr.2020.100458

Monteiro, P. J. M., Miller, S. A., & Horvath, A. (2017). Towards sustainable concrete. Nature Materials, 16(7), 698699. https://doi.org/10.1038/nmat4930 DOI: https://doi.org/10.1038/nmat4930

Nilimaa, J. (2023). Smart materials and technologies for sustainable concrete construction. Developments in the Built Environment, 15, 100177. https://doi.org/10.1016/j.dibe.2023.100177 DOI: https://doi.org/10.1016/j.dibe.2023.100177

Nithurshan, M., & Elakneswaran, Y. (2023). A systematic review and assessment of concrete strength prediction models. Case Studies in Construction Materials, 18, e01830. https://doi.org/10.1016/j.cscm.2023.e01830 DOI: https://doi.org/10.1016/j.cscm.2023.e01830

Peng, Y., & Unluer, C. (2023). Development of alternative cementitious binders for 3D printing applications: A critical review of progress, advantages and challenges. Composites Part B: Engineering, 252, 110492. https://doi.org/10.1016/j.compositesb.2022.110492 DOI: https://doi.org/10.1016/j.compositesb.2022.110492

Pourhakkak, P., Taghizadeh, M., Taghizadeh, A., & Ghaedi, M. (2021). Chapter 2 - Adsorbent. In M. Ghaedi (Ed.), Adsorption: Fundamental Processes and Applications (Vol. 33, pp. 71210). Elsevier. https://doi.org/10.1016/B978-0-12-818805-7.00009-6 DOI: https://doi.org/10.1016/B978-0-12-818805-7.00009-6

Qadir, M., Schubert, S., Oster, J. D., Sposito, G., Minhas, P. S., Cheraghi, S. A. M., Murtaza, G., Mirzabaev, A., & Saqib, M. (2018). High magnesium waters and soils: Emerging environmental and food security constraints. Science of The Total Environment, 642, 11081117. https://doi.org/10.1016/j.scitotenv.2018.06.090 DOI: https://doi.org/10.1016/j.scitotenv.2018.06.090

Revuelta, M. B. (2021). Chapter 6: Cement. In Construction Materials: Geology, Production and Applications. http://www.springer.com/series/15201 DOI: https://doi.org/10.1007/978-3-030-65207-4_6

Saedi, A., Jamshidi-Zanjani, A., & Darban, A. K. (2021). A review of additives used in the cemented paste tailings: Environmental aspects and application. Journal of Environmental Management, 289, 112501. https://doi.org/10.1016/j.jenvman.2021.112501 DOI: https://doi.org/10.1016/j.jenvman.2021.112501

Saha, A. K., Khan, M. N. N., Sarker, P. K., Shaikh, F. A., & Pramanik, A. (2018). The ASR mechanism of reactive aggregates in concrete and its mitigation by fly ash: A critical review. Construction and Building Materials, 171, 743758. https://doi.org/10.1016/j.conbuildmat.2018.03.183 DOI: https://doi.org/10.1016/j.conbuildmat.2018.03.183

Scrivener, K. L., John, V. M., & Gartner, E. M. (2018). Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry. Cement and Concrete Research, 114, 226. https://doi.org/10.1016/j.cemconres.2018.03.015 DOI: https://doi.org/10.1016/j.cemconres.2018.03.015

Series, I. O. P. C., & Science, M. (2018). The possibilities of analysis of limestone chemical composition. https://doi.org/10.1088/1757-899X/379/1/012033 DOI: https://doi.org/10.1088/1757-899X/379/1/012033

Sika AG. (2018). Construction of a Floor Slab on Ground - A Checklist. www.sika.com@YourSurface

Singh, R. (2020). 6 - Understanding the role of hydration water and nano C-S-H colloids in concrete. In M. S. Liew, P. Nguyen-Tri, T. A. Nguyen, & S. Kakooei (Eds.), Smart Nanoconcretes and Cement-Based Materials (pp. 157182). Elsevier. https://doi.org/10.1016/B978-0-12-817854-6.00006-4 DOI: https://doi.org/10.1016/B978-0-12-817854-6.00006-4

Stanin, H., Mikuli, H., Wang, X., & Dui, N. (2020). A review on alternative fuels in future energy system. Renewable and Sustainable Energy Reviews, 128, 109927. https://doi.org/10.1016/j.rser.2020.109927 DOI: https://doi.org/10.1016/j.rser.2020.109927

Supriya, Chaudhury, R., Sharma, U., Thapliyal, P. C., & Singh, L. P. (2023). Low-CO2 emission strategies to achieve net zero target in cement sector. Journal of Cleaner Production, 417, 137466. https://doi.org/10.1016/j.jclepro.2023.137466 DOI: https://doi.org/10.1016/j.jclepro.2023.137466

Surahyo, A. (2019). Physical Properties of Concrete. In Concrete Construction: Practical Problems and Solutions (pp. 6188). Springer International Publishing. https://doi.org/10.1007/978-3-030-10510-5_3 DOI: https://doi.org/10.1007/978-3-030-10510-5_3

Tsardaka, E.-C., Sougioultzi, K., Konstantinidis, A., & Stefanidou, M. (2023). Interpreting the setting time of cement pastes for modelling mechanical properties. Case Studies in Construction Materials, 19, e02364. https://doi.org/10.1016/j.cscm.2023.e02364 DOI: https://doi.org/10.1016/j.cscm.2023.e02364

Verian, K. P., Ashraf, W., & Cao, Y. (2018). Properties of recycled concrete aggregate and their influence in new concrete production. Resources, Conservation and Recycling, 133, 3049. https://doi.org/10.1016/j.resconrec.2018.02.005 DOI: https://doi.org/10.1016/j.resconrec.2018.02.005

Villagrn-Zaccardi, Y. A., Marsh, A. T. M., Sosa, M. E., Zega, C. J., De Belie, N., & Bernal, S. A. (2022). Complete re-utilization of waste concretesValorisation pathways and research needs. Resources, Conservation and Recycling, 177, 105955. https://doi.org/10.1016/j.resconrec.2021.105955 DOI: https://doi.org/10.1016/j.resconrec.2021.105955

Vu, C.-C., Pl, O., Weiss, J., & Amitrano, D. (2020). Revisiting the concept of characteristic compressive strength of concrete. Construction and Building Materials, 263, 120126. https://doi.org/10.1016/j.conbuildmat.2020.120126 DOI: https://doi.org/10.1016/j.conbuildmat.2020.120126

Wang, W., Shen, A., Lyu, Z., He, Z., & Nguyen, K. T. Q. (2021). Fresh and rheological characteristics of fiber reinforced concreteA review. Construction and Building Materials, 296, 123734. https://doi.org/10.1016/j.conbuildmat.2021.123734 DOI: https://doi.org/10.1016/j.conbuildmat.2021.123734

Wilkie, S., & Dyer, T. (2024). Mortar and Concrete: Precursors to Modern Materials. International Journal of Architectural Heritage, 18(9), 14401463. https://doi.org/10.1080/15583058.2023.2235319 DOI: https://doi.org/10.1080/15583058.2023.2235319

Wypych, F., & de Freitas, R. A. (2022). Chapter 1 - Clay minerals: Classification, structure, and properties. In F. Wypych & R. A. de Freitas (Eds.), Clay Minerals and Synthetic Analogous as Emulsifiers of Pickering Emulsions (Vol. 10, pp. 335). Elsevier. https://doi.org/10.1016/B978-0-323-91858-9.00004-5 DOI: https://doi.org/10.1016/B978-0-323-91858-9.00004-5

Xia, Y., Liu, M., Zhao, Y., Chi, X., Guo, J., Du, D., & Du, J. (2023). Hydration mechanism and phase assemblage of blended cement with iron-rich sewage sludge ash. Journal of Building Engineering, 63, 105579. https://doi.org/10.1016/j.jobe.2022.105579 DOI: https://doi.org/10.1016/j.jobe.2022.105579

Xue, C. (2022). Performance and mechanisms of stimulated self-healing in cement-based composites exposed to saline environments. Cement and Concrete Composites, 129, 104470. https://doi.org/10.1016/j.cemconcomp.2022.104470 DOI: https://doi.org/10.1016/j.cemconcomp.2022.104470

Yi, Y., Ma, W., Sidike, A., Ma, Z., Fang, M., Lin, Y., Bai, S., & Chen, Y. (2022). Synergistic effect of hydration and carbonation of ladle furnace aslag on cementitious substances. Scientific Reports, 12(1), 14526. https://doi.org/10.1038/s41598-022-18215-7 DOI: https://doi.org/10.1038/s41598-022-18215-7

Yoro, K. O., & Daramola, M. O. (2020). Chapter 1 - CO2 emission sources, greenhouse gases, and the global warming effect. In M. R. Rahimpour, M. Farsi, & M. A. Makarem (Eds.), Advances in Carbon Capture (pp. 328). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-819657-1.00001-3 DOI: https://doi.org/10.1016/B978-0-12-819657-1.00001-3

Zhang, L., Du, W., Wang, D., Zhang, Y., Wang, F., Zhang, D., Chen, Y., Zhai, X., Liu, Y., & Yi, X. (2024). Investigating the Effect of Microwave Induction on the Polymerization Rate of Polycarboxylate Superplasticizers. Polymers, 16(3). https://doi.org/10.3390/polym16030322 DOI: https://doi.org/10.3390/polym16030322

Zheng, X., Liu, K., Gao, S., Wang, F., & Wu, Z. (2023). Effect of pozzolanic reaction of zeolite on its internal curing performance in cement-based materials. Journal of Building Engineering, 63, 105503. https://doi.org/10.1016/j.jobe.2022.105503 DOI: https://doi.org/10.1016/j.jobe.2022.105503

Zieri, W., & Ismail, I. (2019). Alternative Fuels from Waste Products in Cement Industry. In L. M. T. Martnez, O. V. Kharissova, & B. I. Kharisov (Eds.), Handbook of Ecomaterials (pp. 11831206). Springer International Publishing. https://doi.org/10.1007/978-3-319-68255-6_142 DOI: https://doi.org/10.1007/978-3-319-68255-6_142

Zunino, F., Dhandapani, Y., Haha, M. Ben, Skibsted, J., Joseph, S., Krishnan, S., Parashar, A., Juenger, M. C. G., Hanein, T., Bernal, S. A., Scrivener, K. L., & Avet, F. (2022). Hydration and mixture design of calcined clay blended cements: review by the RILEM TC 282-CCL. Materials and Structures, 55. https://api.semanticscholar.org/CorpusID:253249781 DOI: https://doi.org/10.1617/s11527-022-02060-1

Published
2025-05-03
How to Cite
Alisi, I. O., Musa, A., & Jacob, A. G. (2025). RECENT ADVANCES IN CEMENT CHEMISTRY AND APPLICATIONS: A REVIEW. FUDMA JOURNAL OF SCIENCES, 9, 301 - 310. https://doi.org/10.33003/fjs-2025-09(AHBSI)-3452