THE IMPACT OF ARBUSCULAR MYCORRHIZAL FUNGAL INOCULANTS ON GROWTH, NUTRIENTS, AND YIELD OF VEGETABLE PLANTS: A REVIEW

  • Umma Abdurrahman Yakasai Bayero University Kano
  • Safianu Rabiu
Keywords: Arbuscular mycorrhizal fungi (AMF), Photosynthates, Inoculants, Mycelium, Symbiosis

Abstract

Arbuscular mycorrhizal fungi (AMF), belonging to the phylum Glomeromycota, establish symbiotic associations with plant roots, enhancing nutrient uptake through extensive hyphal networks. These networks facilitate the acquisition of essential nutrients, particularly phosphorus, while the host plants supply the fungi with photosynthates. This review examines the impact of AMF inoculation on onion, tomato, cucumber, and pepper. The findings highlight the numerous benefits conferred by AMF symbiosis, which includes significant enhancements in plant growth and development. AMF inoculation has been shown to improve photosynthetic efficiency, increase plant height, leaf area, root length, and both fresh and dry biomass, as well as boost fruit yield in terms of number, size, and weight. Furthermore, AMF contribute to improved nutrient and water absorption by extending their hyphae into deeper soil layers, thereby enhancing resource availability for plants. Additionally, AMF inoculation plays a crucial role in mitigating biotic and abiotic stresses in vegetable crops while also improving soil stability by reducing leaching and erosion.

References

Abdellatef, A.H. and Chaoxing, H. (2011). Effect of arbuscular mycorrhizal fungi on growth, mineral nutrition, antioxidant enzymes activity and fruit yield of tomato grown under salinity stress. Scientia Horticulturae, 127(2011): 228233. DOI: https://doi.org/10.1016/j.scienta.2010.09.020

AbdelRahim, R.W., Manea, A.I., and Anbagi, R.A. (2023) Techniques of Arbuscular mycorrhiza as a Biofertilizer and an Anti-Transpiration for Promoting Plant Growth and Fruit Chemical Features of IOP Conf. Series: Earth and Environmental Science 1213 (2023). IOP Publishing https://doi.org/10.1088/1755-1315/1213/1/012065 DOI: https://doi.org/10.1088/1755-1315/1213/1/012065

Abdullahi R. and Sheriff, H. H (2013). Effect of Arbuscular Mycorrhizal Fungi and Chemical Fertilizer on Growth and shoot nutrients content of Onion under Field Condition in Northern Sudan Savanna of Nigeria. Journal of Agriculture and Veterinary Science 3(5): 85-90. DOI: https://doi.org/10.9790/2380-0358590

Affokpon, A., Coyne, D.L., Lawouin, L., Tossou, C., Agbd, D., and Coosemans, J. (2011). Effectiveness of native West African arbuscular mycorrhizal fungi in protecting vegetable crops against root-knot nematodes Biol Fertil Soils (2011) 47:207217 https://doi.org/10.1007/s00374-010-0525-1 DOI: https://doi.org/10.1007/s00374-010-0525-1

Aguilera, P. Becerra, N. Alvear, M. Ortiz, N. Turrini, A. et al (2021). Arbuscular mycorrhizal fungi from acidic soils favors production of tomatoes and lycopene concentration Journal of the Science of Food and Agriculture / Volume 102, Issue 6 / p. 2352-2358 at https://doi.org/10.1002/jsfa.11573 DOI: https://doi.org/10.1002/jsfa.11573

Ahammed, G.J. and Hajiboland, R. (2024). Arbuscular Mycorrhizal Fungi and Higher Plants Fundamentals and Applications (eBook) https://doi.org/10.1007/978-981-99-8220-2 DOI: https://doi.org/10.1007/978-981-99-8220-2

Alam, M.Z., Choudhury, T.R. and Mridha, M.A.U. (2023). Arbuscular Mycorrhizal Fungi Enhance Biomass Growth, Mineral Content, and Antioxidant Activity in Tomato Plants under Drought Stress. Hindawi Journal of Food Quality Volume 2023, Article ID 2581608, at https://doi.org/10.1155/2023/2581608 DOI: https://doi.org/10.1155/2023/2581608

Albrechtova, J., Latr, A., Nedorost, L., Pokluda, R., Posta, K. and Osatka, M. (2012). Dual inoculation with mycorrhizal and saprotrophic fungi applicable in sustainable cultivation improves the yield and nutritive value of onion. The Scientific World Journal, Art. No. 374091 https://doi.org/10.1016/j.jplph.2008.09.013 DOI: https://doi.org/10.1100/2012/374091

Aliasgharzad, N., Bolandnazar, S., Neyshabouri, M., and Chaparzadeh, N., (2009). Impact of soil sterilization and irrigation intervals on P and K acquisition by mycorrhizal onion (Allium cepa). Biologia 64 (3), 512515 DOI: https://doi.org/10.2478/s11756-009-0072-0

Anglo-Castro, A., FerreraCerrato, R., Alarcn, A., Almaraz-Surez, J., Delgadillo-Martnez, J., JimnezFernndez, M., & Garca-Barradas, . (2021). Improved growth of bell pepper (capsicum annuum) plants by inoculating arbuscular mycorrhizal fungi and beneficial rhizobacteria. Scientia Fungorum, 51, e1299. https://doi.org/10.33885/sf.2021.51.1299 DOI: https://doi.org/10.33885/sf.2021.51.1299

Arcidiacono, M., Pellegrino, E., Nuti, M., and Ercoli, L. (2023). Field inoculation by arbuscular mycorrhizal fungi with contrasting life history strategies diferently affects tomato nutrient uptake and residue decomposition dynamics. Plants Science. Available at https://doi.org/10.1007/s11104-023-05995-8 DOI: https://doi.org/10.21203/rs.3.rs-2321445/v1

Balog A, Loxdale HD, Blint J, et al., (2017). The arbuscular mycorrhizal fungus Rhizophagus irregularis affects arthropod colonization on sweet pepper in both the field and greenhouse. Journal of Pest Science 90, 935-46. DOI: https://doi.org/10.1007/s10340-017-0844-1

Bagheri, V., Shamshiri, M.H., ALaei, H. and Salehi, H. (2019). The role of inoculum identityfor growth photosynthesis, and chlorophyll fluorescence of zinnia plants by arbuscular mycorrhizal fungi under varying water regimes. Photosynthetica 57 (2): 409-419, 2019. https://doi.org/10.32615/ps.2019. DOI: https://doi.org/10.32615/ps.2019.048

Barber, N. A., Kiers, E.T., Hazzard, R. V., and Adler, L. S., (2013). Context dependency of Arbuscular mychorrizal fungi on plants-insect interaction in an agroecosystem. Frontiers in plant science. Vol 4(338). Available at https://doi.org/10.3389/fpls.2013.00330 DOI: https://doi.org/10.3389/fpls.2013.00338

Baum, C.; El-Tohamy, W.; Gruda, N. (2015) Increasing the productivity and product quality of vegetable crops using arbuscular mycorrhizal fungi: A review. Sci. Hortic. 2015, 187, 131141 DOI: https://doi.org/10.1016/j.scienta.2015.03.002

Begum, N., Qin, Chen., Ahanger M.A., Raza, S., Khan, M.I., Ashraf, M., Ahmed, N. and Zhang, L. (2019). Role of Arbuscular Mycorrhizal Fungi in Plant Growth Regulation: Implications in Abiotic Stress Tolerance. Front Plant Sci. 2019; 10: 1068. https://doi.org/10.3389/fpls.2019.01068 DOI: https://doi.org/10.3389/fpls.2019.01068

Belay, Vestberg, M. and Assefa, F (2015). Diversty And Abundance Of Arbuscular Mycorrhizal Fungi Across Different Land Use Types In A Humid Low Land Area of Ethiopia. Tropical and Subtropical Agroecosystems, 18 (2015): 47 - 69 47 DOI: https://doi.org/10.56369/tsaes.1992

Bender, S.F., Conen, F., and vander Heijden, M.G.A. (2015). Mycorrhizal eects on nutrient cycling, nutrient leaching and N2O production in experimental grassland. Soil Biol. Biochem. 80, 283292. https://doi.org/10.1016/j.soilbio.2014.10.016 DOI: https://doi.org/10.1016/j.soilbio.2014.10.016

Bettoni, M.M., Mogor, F., Pauletti, V., Goicoechea, N., (2014). Growth and metabolism of onion seedlings as affected by the application of humic substances, mycorrhizal inoculation and elevated CO2. Sci. Hortic. 180, 227235. DOI: https://doi.org/10.1016/j.scienta.2014.10.037

Bolandnazar, S. The effect of mycorrhizal fungi on onion (Allium cepa L.) growth and yield under three irrigation intervals at field condition. Journal of Food, Agriculture & Environment Vol.7 (2) : 360-362. 2009

Bona E, Cantamessa S, Massa N, Manassero P, Marsano F, Copetta A, Lingua G, DAgostino G, Gamalero E, Berta G (2017) Arbuscular mycorrhizal fungi and plant Growth - promoting pseudomonas improve yield, quality and nutritional value of tomato: a feld study. Mycorrhiza 27:111. https://doi.org/10.1007/s00572-016-0727-y DOI: https://doi.org/10.1007/s00572-016-0727-y

Bonini, P., Rouphael, Y., Miras-Moreno, B., Lee, B., Cardarelli, M., Erice, G., & Colla, G. (2020). A microbial-based biostimulant enhances sweet pepper performance by metabolic reprogramming of phytohormone profile and secondary metabolism. Frontiers in Plant Science, 11. https://doi.org/10.3389/fpls.2020.567388 DOI: https://doi.org/10.3389/fpls.2020.567388

Bowles, T. M., Barrios-Masias, F. H., Carlisle, E. A., Cavagnaro, T. R., and Jackson, L. E. (2016). Effects of arbuscular mycorrhizae on tomato yield, nutrient uptake, water relations, and soil carbon dynamics under deficit irrigation in field conditions. Sci. Total Environ. 566, 12231234. https://doi.org/10.1016/j.scitotenv.2016. 05.178 DOI: https://doi.org/10.1016/j.scitotenv.2016.05.178

Boyhan, G. E., C. McGregor, S. OConnell, J. Biang and D. Berle (2019). A Comparison of 13 Sweet Pepper Varieties under an Organic Farming System. 30(1):1-9 DOI: https://doi.org/10.21273/HORTTECH04455-19

Cameron, D. D. (2010). Arbuscular mycorrhizal fungi as (agro) ecosystem engineers. Plant Soil 333, 15. https://doi.org/10.1007/s11104-010-0361-y DOI: https://doi.org/10.1007/s11104-010-0361-y

Chafai, W.; Haddioui, K.; Serghini-Caid, H.; Labazi, H.; AlZain, M.N.; Noman, O.; Parvez, M.K.; Addi, M.; and Khalid, A. (2023). Impact of Arbuscular mycorrhizal Fungal Strains Isolated from Soil on the Growth, Yield, and Fruit Quality of Tomato Plants under Different Fertilization Regimens. Horticulturae 2023, 9, 973. https://doi.org/10.3390/horticulturae9090973 DOI: https://doi.org/10.3390/horticulturae9090973

Chen S, Zhao H., Zou C., Li Y., Chen Y., Wang Z., Jiang Y., Liu A., Zhao P., Wang M and Ahammed G.J (2017). Combined Inoculation with Multiple Arbuscular Mycorrhizal Fungi Improves Growth, Nutrient Uptake and Photosynthesis in Cucumber Seedlings. Front. Microbiol. 8:2516. https://doi.org/10.3389/fmicb.2017.02516 DOI: https://doi.org/10.3389/fmicb.2017.02516

Choshali, A. (2019). Quantitative changes of chitinase and 1, 3 glucanase in cucumber roots pre-colonized by vam fungus against meloidogyne incognita. Pakistan Journal of Nematology, 37(2), 149-160. https://doi.org/10.18681/pjn.v37.i02.p149-160 DOI: https://doi.org/10.18681/pjn.v37.i02.p149-160

Claudia, C.R., Leonardo S., Csar O.O., Gina L.C., Fernando B.B., and Rosa R.H. (2009) Effect Of Arbuscular Mycorrhizal Fungi On An Ecological Crop Of Chili Peppers (Capsicum annuum L.) Chilean Journal Of Agricultural Research 69 (1): 79-87 DOI: https://doi.org/10.4067/S0718-58392009000100010

Conversa G, Lazzizera C, Bonasia A, Elia A (2013) Yield and phosphorus uptake of a processing tomato crop grown at diferent phosphorus levels in a calcareous soil as afected by mycorrhizal inoculation under feld conditions. Biol Fert Soils 49:691703. https://doi.org/10. 1007/s00374-012-0757-3

Daei, G., Ardekani, M. R., Rejali, F., Teimuri, S., and Miransari, M. (2009). Alleviation of salinity stress on wheat yield, yield components, and nutrient uptake using arbuscular mycorrhizal fungi under field conditions. J. Plant Physiol. 166, 617625. https://doi.org/10.1016/j.jplph.2008.09.013 DOI: https://doi.org/10.1016/j.jplph.2008.09.013

Douds, D., Lee J., McKeever, L., Ziegler-Ulsh, C., and Ganserc, S. (2016). Utilization of inoculum of AM fungi produced on-farm increases the yield of 2 Solanum lycopersicum: a summary of 7 years of field trials on a conventional vegetable 3 farm with high soil phosphorus. Scientia Horticulturae 207: 89-96. DOI: https://doi.org/10.1016/j.scienta.2016.05.013

Duc, N., Mayer, Z., Pk, Z., Helyes, L., & Posta, K. (2017). Combined inoculation of arbuscular mycorrhizal fungi, pseudomonas fluorescens and trichoderma spp. for enhancing defense enzymes and yield of three pepper cultivars. Applied Ecology and Environmental Research, 15(3), 1815-1829. https://doi.org/10.15666/aeer/1503_18151829 DOI: https://doi.org/10.15666/aeer/1503_18151829

El-Sherbeny, T., Mousa, A., & ElSayed, E. (2022). Use of mycorrhizal fungi and phosphorus fertilization to improve the yield of onion (allium cepa l.) plant. Saudi Journal of Biological Sciences, 29(1), 331-338. https://doi.org/10.1016/j.sjbs.2021.08.094 DOI: https://doi.org/10.1016/j.sjbs.2021.08.094

Ercoli, L., Schler, A., Arduini, I., & Pellegrino, E. (2017). Strong increase of durum wheat iron and zinc content by field-inoculation with arbuscular mycorrhizal fungi at different soil nitrogen availabilities. Plant and Soil, 419(1-2), 153-167.

https://doi.org/10.1007/s11104-017-3319-5 DOI: https://doi.org/10.1007/s11104-017-3319-5

Evelin, H., Kapoor, R., & Giri, B. (2009). Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Annals of botany, 104(7), 1263- 1280. DOI: https://doi.org/10.1093/aob/mcp251

Fauziyah, N., Hadisutrisno, B., & Suryanti, S. (2017). The roles of arbuscular mycorrhizal fungi in the intensity of the foot rot disease on pepper plant from the infected soil. Journal of Degraded and Mining Lands Management, 4(4), 937. DOI: https://doi.org/10.15243/jdmlm.2017.044.937

FAOSTAT. (2019). Available online: http://www.fao.org/faostat/en/#data/QC

Felfldi, Z., Vidican, R., Stoian, V., Roman, I.A., Sestras, A.F., Rusu, T., and Sestras, R.E. (2022). Arbuscular Mycorrhizal Fungi and Fertilization Influence Yield, Growth and Root Colonization of Different Tomato Genotype. Plants 11, 1743. https://doi.org/10.3390/plants11131743 DOI: https://doi.org/10.3390/plants11131743

Franczuk, J., Tartanus, M., Rosa, R., Zaniewicz-Bajkowska, A., Dbski, H., Andrejiov, A., & Dydiv, A. (2023). The effect of mycorrhiza fungi and various mineral fertilizer levels on the growth, yield, and nutritional value of sweet pepper (capsicum annuum l.). Agriculture, 13(4), 857. https://doi.org/10.3390/agriculture13040857 DOI: https://doi.org/10.3390/agriculture13040857

Gebreslassie, S. (2024). Inoculation of native arbuscular mycorrhizae and bacillus subtilis can improve growth in vegetable crops. International Journal of Microbiology, 2024(1). https://doi.org/10.1155/2024/9226715 DOI: https://doi.org/10.1155/2024/9226715

Golubkina, N.; Zamana, S.; Seredin, T.; Poluboyarinov, P.; Sokolov, S.; Baranova, H.; Krivenkov, L.; Pietrantonio, L.; Caruso, G. (2020) Effect of selenium biofortification and arbuscular mycorrhizal fungi on yield, quality and antioxidant properties of shallot bulbs. Plants 2019, 8, 102 DOI: https://doi.org/10.3390/plants8040102

Guo, T., Zhang, J., Christie, P., an Li, X. (2007) Pungency of Spring Onion as Affected by Inoculation with Arbuscular Mycorrhizal Fungi and Sulfur Supply. Journal of Plant Nutrition, 30: 10231034, 2007 DOI: https://doi.org/10.1080/01904160701394311

Gutjahr, C., and Paszkowski, U. (2013). Multiple control levels of root system remodeling in arbuscular mycorrhizal symbiosis. Front. Plant Sci. 4:204. https://doi.org/10.3389/fpls.2013.00204 DOI: https://doi.org/10.3389/fpls.2013.00204

Harold, B.J. (2002). Microbiological applications: laboratory manual in general microbiology, McGraw Hill Boston, 8th edition.

Gutjahr, C., Gobbato, E., Choi, J., Riemann, M., Johnston, M. G., Summers, W., Carbonnel, S., Mansfield, C., Yang, S., Nadal, M., Acosta, I., Takano, M., Jiao, W., Schneeberger, K., Kelly, K. A., & Paszkowski, U. (2015). Rice perception of symbiotic arbuscular mycorrhizal fungi requires the karrikin receptor complex. RESEARCH, 350(6267), 15211524. https://doi.org/10.1126/science.aac8260 DOI: https://doi.org/10.1126/science.aac9715

Goussous, S.J. and Mohammad, M.J.(2009) Comparative Effect of Two Arbuscular Mycorrhizae and N and P Fertilizers on Growth and Nutrient Uptake of Onions. International Journal Of Agriculture & Biology at http://www.fspublishers.org

Han, B.; Guo, S.-R.; Chaoxing, H.; Yan, Y.; Yu, X.-C (2012). Effects of arbuscular Mycorrhizal fungi (AMF) on the plant growth, fruit yield, and fruit quality of cucumber under salt stress. Yingyong Shengtai Xuebao 23, 154158.

Hegazi AM, El-Shraiy AM, Ghoname A, (2017). Mitigation of salt stress negative effects on sweet pepper using arbuscular mycorrhizal fungi (AMF), Bacillus megaterium and brassinosteroids (BRs). Gesunde Pflanzen 69, 91-102. DOI: https://doi.org/10.1007/s10343-017-0393-9

Hu, J., Lin, X., Wang, J., Shen, W., Wu, S., Peng, S., and Mao, T. (2010). Arbuscular mycorrhizal fungal inoculation enhances suppression of cucumber fusarium wilt in greenhouse soils. Pedosphere 20: 586-593 DOI: https://doi.org/10.1016/S1002-0160(10)60048-3

Ilyas, U., Toit, L. J., Hajibabaei, M. and, & Mcdonald, M. R. (2024). In fl uence of plant species, mycorrhizal inoculant , and soil phosphorus level on arbuscular mycorrhizal communities in onion and carrot roots. Frontiers in Plant Scienceand Evolution, 141(1324626), 114. https://doi.org/10.3389/fpls.2023.1324626 DOI: https://doi.org/10.3389/fpls.2023.1324626

Jamiokowska, Thanoon, A.H., Skwaryo-Bednarz, B. Patkowska, E. and Mielniczu, E. (2020) Mycorrhizal inoculation as an alternative in the ecological production of tomato (Lycopersicon esculentum Mill.) Int. Agrophys., 2020, 34, 253-264 https://doi.org/10.31545/intagr/118196 DOI: https://doi.org/10.31545/intagr/118196

Jung, S. C., Martinez-Medina, A., Lopez-Raez, J. A., and Pozo, M. J. (2012). Mycorrhiza-induced resistance and priming of plant defenses. J. Chem. Ecol. 38,651664. https://doi.org/10.1007/s10886-012-0134-6 DOI: https://doi.org/10.1007/s10886-012-0134-6

Kavitha, S.J. and Reddy, P.V (2018). Floral biology and pollination ecology of onion (Allium cepa L.) Journal of Pharmacognosy and Phytochemistry 7(6): 2081-2084.

Khade, S.W., Rodrigues, B. F. (2009). Arbuscular Mycorrhizal Fungi Associated With Varieties of Carica papaya L. in Tropical Agro-Based Ecosystem of Goa, India. Tropical and Subtropical Agroecosystems, 10 (2009): 369 381

Leifheit, E. F., Veresoglou, S. D., Lehmann, A., Morris, E. K., and Rillig, M. C. (2014). Multiple factors inuence the role of arbuscular mycorrhizal fungi in soil aggregation-ameta-analysis. Plant Soil 374,523537. https://doi.org/10.1007/s11104013-1899-2 DOI: https://doi.org/10.1007/s11104-013-1899-2

Lenin, M., Selvakumar, G., Thamizhiniyan , P. and Rajendiran, R. (2010) Growth and Biochemical Changes of Vegetable Seedlings Induced by Arbuscular mycorrhizal Fungus. Journal of Experimental Sciences Vol. 1, Issue 4, Pages 27-31

Leta, A. and Selvaraj, T. (2012). Evaluation of arbuscular mycorrhizal fungi and trichoderma species for the control of onion white rot (sclerotium cepivorum berk). Journal of Plant Pathology & Microbiology, 04(01). https://doi.org/10.4172/2157-7471.1000159 DOI: https://doi.org/10.4172/2157-7471.1000159

Martin, F.M. and van der Heijden, M. G. A. (2024). The mycorrhizal symbiosis: research frontiers in genomics , ecology , and agricultural application. New Phytologist, January. https://doi.org/10.1111/nph.19541 DOI: https://doi.org/10.1111/nph.19541

Masebo, N., Birhane, E., Takele, S., Belay, Z., Lucena, J., & Prez-sanz, A. and Anjulo, A. (2023). Diversity of Arbuscular Mycorrhizal fungi under different agroforestry practices in the drylands of Southern Ethiopia. BMC Plant Biology, 23(634), 114. DOI: https://doi.org/10.1186/s12870-023-04645-6

Mollavali, M., Perner, H., Rohn, S., Riehle, P., Hanschen, F., & Schwarz, D. (2017). Nitrogen form and mycorrhizal inoculation amount and timing affect flavonol biosynthesis in onion (allium cepa l.). Mycorrhiza, 28(1), 59-70. https://doi.org/10.1007/s00572-017-0799-3 DOI: https://doi.org/10.1007/s00572-017-0799-3

Moreb, N., Odwyer C., Jaiswal S, Jaiswal A.K., (2020). Chapter 13 - Pepper. In: Jaiswal AK, ed. Nutritional Composition and Antioxidant Properties of Fruits and Vegetables. Academic Press, 223-38 DOI: https://doi.org/10.1016/B978-0-12-812780-3.00013-1

Nanjundappa, A., Bagyaraj, D., Saxena, A., Kumar, M., & Chakdar, H. (2019). Interaction between arbuscular mycorrhizal fungi and bacillus spp. in soil enhancing growth of crop plants. Fungal Biology and Biotechnology, 6(1). https://doi.org/10.1186/s40694-019-0086-5 DOI: https://doi.org/10.1186/s40694-019-0086-5

Nzanza B., Marais D., and Soundy P. (2012). Effect of arbuscular mycorrhizal fungal inoculation and biochar amendment on growth and yield of tomato. Int. J. Agric. Biol., 14, 965-969.

Ogoma, B.O., Stephen, F., Omondi, S.F., Ngaira, J. and Kimani, J.W. (2021). Molecular Diversity of Arbuscular Mycorrhizal Fungi (AMF) Associated with Carissa edulis, an Endangered Plant Species along Lake Victoria Basin of Kenya. Hindawi International Journal of Forestry Research Volume 2021, Article ID 7792282

Ortas, I. (2010). Effect of mycorrhiza application on plant growth and nutrient uptake in cucumber production under field conditions. Span. J. Agric. Res. 8, S116S122. DOI: https://doi.org/10.5424/sjar/201008S1-1230

Ortas I, Sari N, Akpinar , Yetisir H, (2011). Screening mycorrhiza species for plant growth, P and Zn uptake in pepper seedling grown under greenhouse conditions. Scientia Horticulturae 128, 92-8. DOI: https://doi.org/10.1016/j.scienta.2010.12.014

Oruru, M.B. and Njeru, E.M. (2016). Upscaling arbuscular mycorrhizal symbiosis and related agroecosystems services in smallholder farming systems. BioMed. Res. Int. 2016:1-12. DOI: https://doi.org/10.1155/2016/4376240

Oseni, T.O., Shongwe, N.S., and Masarirambi, M.T. (2010). Effect of arbuscular mycorrhiza (AM) inoculation on the performance of tomato nursery seedlings in vermiculite. Int. J. Agric. Biol. 12: 789 792 available at https://doi.org/10.1155/2021/7792282 DOI: https://doi.org/10.1155/2021/7792282

Pokluda, R., Ragasov, L., Jurica, M., Kalisz, A., Komorowska, M., Niemiec, M., & Skara, A. (2023). The shaping of onion seedlings performance through substrate formulation and co-inoculation with beneficial microorganism consortia. Frontiers in Plant Science, 14. https://doi.org/10.3389/fpls.2023.1222557 DOI: https://doi.org/10.3389/fpls.2023.1222557

Poulton, J.L.; Bryla, D.; Koide, R.T.; Stephenson, A.G (2002). Mycorrhizal infection and high soil phosphorus improve vegetative growth and the female and male functions in tomato. New Phytol. 154, 255264 DOI: https://doi.org/10.1046/j.1469-8137.2002.00366.x

Pozo, M. J., Lpez-Rez, J. A., Azcn-Aguilar, C., and Garca-Garrido, J. M. (2015). Phytohormones as integrators of environmental signals in the regulation of mycorrhizal symbioses. New Phytol. 205, 14311436. https://doi.org/10.1111/nph.13252 DOI: https://doi.org/10.1111/nph.13252

Rao, G.V., C. Manoharachaby, C., t.K. Kunwari, T.K., and B.R Rajeshwar R. (2000). Arbuscular Mycorrhizar Fungi Associated with Some Economically lmportant Spicesand Aromatic plants. Philippine Journal of Science 129 (1): 5'1-55.

Reininger, V. and Sieber, T. (2013). Mitigation of antagonistic effects on plant growth due to root cocolonization by dark septate endophytes and ectomycorrhiza. Environmental Microbiology Reports, 5(6), 892-898. https://doi.org/10.1111/1758-2229.12091 DOI: https://doi.org/10.1111/1758-2229.12091

Rouphael, Y., Franken, P., Schneider, C., Schwarz, D., Giovannetti, M., Agnolucci, M., et al. (2015). Arbuscular mycorrhizal fungi act as biostimulants in horticultural crops. Sci. Hortic. 196, 91108. https://doi.org/10.1016/j.scienta.2015. 09.002 DOI: https://doi.org/10.1016/j.scienta.2015.09.002

Salamiah, S., Ciptady, M., & Nisa, C. (2019). Control of fusarium disease in onion with plant growth promoting rhizobacteria (pgpr) and mycorrhizae and its effect on growth and yield of onion. Journal of Wetlands Environmental Management, 7(1), 23. https://doi.org/10.20527/jwem.v7i1.184 DOI: https://doi.org/10.20527/jwem.v7i1.184

Samri, S.E., Aberkani1, K., Said, M., Haboubi, K.,and Ghazal, H. (2021) Effects of inoculation with mycorrhizae and the benefits of bacteria on physicochemical and microbiological properties of soil, growth, productivity and quality of table grapes

grown under Mediterranean climate conditions. Journal of Plant Protection Research

Sensoy S, Demir S, Turkmen O, Erdinc C, Savur O.B, (2007). Responses of some different pepper (Capsicum annuum L.) genotypes to inoculation with two different arbuscular mycorrhizal fungi. Scientia Horticulturae 113, 92-5. DOI: https://doi.org/10.1016/j.scienta.2007.01.023

Sry ,D.J-M, Kouadjo, Z.G.C., Voko, B.R.R., and Zz, A. (2016) Selecting Native Arbuscular Mycorrhizal Fungi to Promote Cassava Growth and Increase Yield under Field Conditions. Front. Microbiol. 7:2063. https://doi.org/10.3389/fmicb.2016.02063 DOI: https://doi.org/10.3389/fmicb.2016.02063

Shafiq, M.; Casas-Sols, J.; Neri-Luna, C.; Kiran, M.; Yasin, S.; Gonzlez-Eguiarte, D.R.; Muoz-Urias, A. (2023). Arbuscular Mycorrhizal Fungi as a Plant Growth Stimulant in a Tomato and Onion Intercropping System. Agronomy 2023, 13, 2003. https://doi.org/10.3390/agronomy13082003 DOI: https://doi.org/10.3390/agronomy13082003

Shi, Z., Mickan, B., Feng, G., and Chen, Y. (2015). Arbuscular mycorrhizal fungi improved plant growth and nutrient acquisition of desert ephemeral Plantago minuta under variable soil water conditions. J. Arid Land 7, 414420. https://doi.org/10.1007/s40333-014-0046-0 DOI: https://doi.org/10.1007/s40333-014-0046-0

Shuab, R. Lone, R., Naidu, J., Sharma, V., Imtiyaz, S., and Koul, K.K. (2014). Benefits of Inoculation of Arbuscular Mycorrhizal Fungi on Growth and Development of Onion (Allium cepa) Plant. American-Eurasian J. Agric. & Environ. Sci., 14 (6): 527-535, at https://doi.org/10.5829/idosi.aejaes.2014.14.06.12347

Smith, S.E. and Read, D. (2008). Mycorrhizal symbiosis. 3rd. San Diego (CA): Academic Press; 2008.

Song, Y., Chen, D., Lu, K., Sun, Z. and Zeng, R (2015). Enhanced tomato disease resistance primed by arbuscular mycorrhizal fungus. Front. Plant Sci. 6:786. https://doi.org/10.3389/fpls.2015.00786 DOI: https://doi.org/10.3389/fpls.2015.00786

Soylu, E., Iik, M., and Ortas, I. (2023) The Effect of Mycorrhiza Inoculation on Pepper Plant Growth and Mycorrhizal Dependency. International Journal of Agricultural and Applied Sciences, June 2023, 4(1): 127-131 https://www.agetds.com/ijaas available at https://doi.org/10.52804/ijaas2023.4121 DOI: https://doi.org/10.52804/ijaas2023.4121

Sousaa, B., Soaresa, C., Sousaa, F., Martins, M., Mateusa, P., Rodrigues, F., Azenha, M., Moutinho-Pereirae, J., Lino-Netof, T., and Fidalgoa, F. (2024) Enhancing tomato plantstolerance to combined heat and salt stressThe role of arbuscular mycorrhizae and biochar. Science of the Total Environment 948(2024)174860 DOI: https://doi.org/10.1016/j.scitotenv.2024.174860

Subramanian, K.S., Santhanakrishnan, P., and Balasubramanian, P. (2006). Responses of feld grown tomato plants to arbuscular mycorrhizal fungal colonization under varying intensities of drought stress. Sci Hortic 107:245253. https://doi.org/10.1016/j.scienta.2005.07.006 DOI: https://doi.org/10.1016/j.scienta.2005.07.006

Tawaraya, K., Hirose, R., and Wagatsuma, T. (2012). Inoculation of arbuscular mycorrhizal fungi can substantially reduce phosphate fertilizer application to Allium fistulosum L. and achieve marketable yield under field condition. Biol. Fertil. Soils 48 (7), 839843. DOI: https://doi.org/10.1007/s00374-012-0669-2

Tchabi, A., Blaise, M., Nicolas, O., & Pana, K. (2022). Bioferlizing and nematodes control potentials of four native isolates of arbuscular mycorrhizal fungi on sweet pepper (capsicum annuum) in togo. International Journal of Plant & Soil Science, 28-40. https://doi.org/10.9734/ijpss/2022/v34i242610 DOI: https://doi.org/10.9734/ijpss/2022/v34i242610

Tian, X. Liu, X.Q., Liu, X.R., Li, Q.S., Abd_Allah, E.F., Wu, Q.S (2023) Mycorrhizal cucumber with Diversispora versiformis has active heat stress tolerance by up-regulating expression of both CsHsp70s and CsPIPs genes. Scientia Horticultarae Voume 319 1 September 2023, 112194available at https://doi.org/10.1016/j.scienta.2023.112194 DOI: https://doi.org/10.1016/j.scienta.2023.112194

Tfenki, S.K., Demir, S. ensoy, S. nsal, H. et al. (2010)The effects of arbuscular mycorrhizal fungi on the seedling growth of four hybrid cucumber (Cucumis sativus L.) cultivars. Turk J Agric 36 (2012) 317-327 https://doi.org/10.3906/tar-1012-160 DOI: https://doi.org/10.3906/tar-1012-1608

Urbano, D., Goicoechea, M., Poveda Arias, N., Velasco, J. et al. (2023). "Development of agricultural bio-inoculants based on mycorrhizal fungi and endophytic filamentous fungi: co-inoculants for improve plant-physiological responses in sustainable agriculture". Biological control 182 July 2023, 105223 'Elsevier BV', 2023, https://core.ac.uk/download/570983149.pdf DOI: https://doi.org/10.1016/j.biocontrol.2023.105223

Wang, C.X., Qin, L., Feng, G., et al. (2003). Effects of three arbuscular mycorrhizal fungi on growth of cucumber seedlings. Journal of Agro-Environment Science 22(3):301303

Wang, C.; Li, X.; Zhou, J.; Wang, G.; Dong, Y. (2008) Effects of Arbuscular Mycorrhizal Fungi on Growth and Yield of Cucumber Plants. Commun. Soil Sci. Plant Anal. 2008, 39, 499509. DOI: https://doi.org/10.1080/00103620701826738

Wang, L., Chen, X., Du, Y., Zhang, D., and Tang, Z (2022). Nutrients Regulate the Effects of Arbuscular Mycorrhizal Fungi on the Growth and Reproduction of Cherry Tomato. Front. Microbiol. 13:843010. https://doi.org/10.3389/fmicb.2022.84301 DOI: https://doi.org/10.3389/fmicb.2022.843010

Xiang, N. (2024). Improved waterlogging tolerance in roots of cucumber plants after inoculation with arbuscular mycorrhizal fungi. Horticulturae, 10(5), 478. https://doi.org/10.3390/horticulturae10050478 DOI: https://doi.org/10.3390/horticulturae10050478

Xiuxiu S, Yansu L, Xianchang Y, et al. (2019) Effects of arbuscular Mycorrhizal fungi (AMF) inoculums on cucumber seedlings. Adv Plants Agric 9(1):127130. https://doi.org/10.15406/apar.2019.09.00422

Yakasai, U.A and Rabiu, S. (2023) Diversity And Abundance Of Native Arbuscular Mycorrhizal Fungi In The Rhizosphere Of Allium Cepa L (Onion Plants) Grown In Kano State, Nigeria. Bayero Journal of Pure and Applied Sciences, 19(1) 1-6 Special Conference Edition, June, 2023

Yilma, G. (2019). The Role of Mycorrhizal Fungi in Pepper (Capsicum annuum) Production. International Journal of Advanced Research in Biological Sciences. 6(12): 59-65

Zhang, L., Zhang, J., Christie, P., & Li, X. (2008). Pre-inoculation with arbuscular mycorrhizal fungi suppresses root knot nematode (meloidogyne incognita) on cucumber (cucumis sativus). Biology and Fertility of Soils, 45(2), 205-211. https://doi.org/10.1007/s00374- 008-0329-8 DOI: https://doi.org/10.1007/s00374-008-0329-8

Published
2025-03-31
How to Cite
Yakasai, U. A., & Rabiu, S. (2025). THE IMPACT OF ARBUSCULAR MYCORRHIZAL FUNGAL INOCULANTS ON GROWTH, NUTRIENTS, AND YIELD OF VEGETABLE PLANTS: A REVIEW. FUDMA JOURNAL OF SCIENCES, 9(3), 215 - 223. https://doi.org/10.33003/fjs-2025-0903-3353