STUDY ON THE EFFECT OF TEMPERATURE ON BIO-ETHANOL PRODUCTION FROM CASSAVA FLOUR AND CASSAVA PEELS: AN INSIGHT INTO BIO-ENERGY PROCESSES
DOI:
https://doi.org/10.33003/fjs-2025-0903-3284Keywords:
Bio-ethanol, Cassava peel, Yeast, Cassava flour, Temperature, Optical densityAbstract
Knowledge of fermentation parameters with respect to temperature is necessary in bio-ethanol production; as an important process in bio-energy applications for green energy utilization. Bio-ethanol provides an alternative clean energy source that can be obtained from biomass, thereby mitigating pollution problems associated with using environmentally unfriendly energy sources. A study into the effect of temperature on bio-ethanol production from cassava flour and cassava peels was investigated. Temperature was varied between 30-60oC at 5oC intervals and the volume of bio-ethanol produced was examined using optical density measurement. An increase in substrate concentration led to a proportionate increase in the volume of bio-ethanol produced at an optimal temperature of 30oC. However, a gradual decrease in bio-ethanol production was observed beyond 30oC (35-60oC), which shows the effect of temperature on bio-ethanol production from cassava flour and cassava peels, with the yeast activity optimum at 30°C using 80 grams of substrate. The optical density measurements provided a reliable indication of optimum microbial activity and bio-ethanol production. Bio-ethanol yield was higher in cassava flour than in cassava peels at the same concentration, indicating higher carbohydrate content in cassava flour. The findings show a significant temperature influence on the activity of the yeast efficiency in bio-ethanol production. Cassava and its peel are important for the production of bio-ethanol because it holds potential as a valuable feedstock for bio-ethanol production, offering a sustainable solution to waste management and clean energy; therefore, knowledge of the optimal fermentation temperature is an important information in bio-ethanol production from cassava precursors.
References
Abdi, M., Alizadeh, F., Daneshi, E., Abouzaripour, M., Fathi, F., & Rahimi, K. (2023). Ameliorative effect of Stevia rebaudiana Bertoni on sperm parameters, in vitro fertilization, and early embryo development in a streptozotocin-induced mouse model of diabetes. Zygote, 31(5), 475-482. https://doi.org/10.1017/s0967199423000266
Adebayo, K. O., Owolabi, M. A., & Khan, M. E. (2024). Comparative anti-diabetic effects of ethanol extracts from leaves, seeds and pods of Moringa oleifera on alloxan induced diabetic rats. FUDMA Journal of Sciences, 8(6), 128 - 136. https://doi.org/10.33003/fjs-2024-0806-2771
Al-Khayri, J. M., Rashmi, R., Toppo, V., Chole, P. B., Banadka, A., Sudheer, W. N., ... & Rezk, A. A. S. (2023). Plant secondary metabolites: The weapons for biotic stress management. Metabolites, 13(6), 716. https://doi.org/10.3390/metabo13060716
Ashraf, M. V., Khan, S., Misri, S., Gaira, K. S., Rawat, S., Rawat, B., ... & Ahmad, S. (2024). High-Altitude Medicinal Plants as Promising Source of Phytochemical Antioxidants to Combat Lifestyle-Associated Oxidative Stress-Induced Disorders. Pharmaceuticals, 17(8). https://doi.org/10.3390/ph17080975
Bagheri, H., Ghasemi, F., Barreto, G. E., Rafiee, R., Sathyapalan, T., & Sahebkar, A. (2020). Effects of curcumin on mitochondria in neurodegenerative diseases. Biofactors, 46(1), 5-20. https://doi.org/10.1002/biof.1566
Bangar, N. S., Gvalani, A., Ahmad, S., Khan, M. S., & Tupe, R. S. (2022). Understanding the role of glycation in the pathology of various non-communicable diseases along with novel therapeutic strategies. Glycobiology, 32(12), 1068-1088. https://doi.org/10.1093/glycob/cwac060
Boye, K. S., Ford, J. H., Thieu, V. T., Lage, M. J., & Terrell, K. A. (2023). The association between obesity and the 5-year prevalence of morbidity and mortality among adults with type 2 diabetes. Diabetes Therapy, 14(4), 709-721. https://doi.org/10.1007/s13300-023-01384-7
Caturano, A., DAngelo, M., Mormone, A., Russo, V., Mollica, M. P., Salvatore, T., ... & Sasso, F. C. (2023). Oxidative stress in type 2 diabetes: impacts from pathogenesis to lifestyle modifications. Current Issues in Molecular Biology, 45(8), 6651-6666. doi: 10.3390/cimb45080420
Chen, X., Xie, N., Feng, L., Huang, Y., Wu, Y., Zhu, H., ... & Zhang, Y. (2024). Oxidative stress in diabetes mellitus and its complications: From pathophysiology to therapeutic strategies. Chinese Medical Journal, 10-1097. https://doi.org/10.1097/CM9.0000000000003230
Elshafey, M., Erfan, O. S., Risha, E., Badawy, A. M., Ebrahim, H. A., El-Sherbiny, M., El-Shenbaby, I., Enan, E. T., Almadani, M. E., & Eldesoqui, M. (2023). Protective effect of Stevia on diabetic induced testicular damage: An immunohistochemical and ultrastructural study. European Review for Medical & Pharmacological Sciences, 27(22). https://doi.org/10.26355/eurrev_202311_34473 .
Forman H.J., Zhang H. Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy. Nat. Rev. Drug Discov. 2021;20:689. https://doi.org/10.1038/s41573-021-00233-1 .
Geng, Y., Faber, K. N., de Meijer, V. E., Blokzijl, H., & Moshage, H. (2021). How does hepatic lipid accumulation lead to lipotoxicity in non-alcoholic fatty liver disease?. Hepatology international, 15, 21-35. https://doi.org/10.1007/s12072-020-10121-2
Hong, J., Chen, L., Jeppesen, P. B., Nordentoft, I., & Hermansen, K. (2006). Stevioside counteracts the -cell hypersecretion caused by long-term palmitate exposure. American Journal of Physiology-Endocrinology and Metabolism, 290(3), E416-E422. https://doi.org/10.1152/ajpendo.00331.2005
Kabir, M. T., Tabassum, N., Uddin, M. S., Aziz, F., Behl, T., Mathew, B., ... & Aleya, L. (2021). Therapeutic potential of polyphenols in the management of diabetic neuropathy. EvidenceBased Complementary and Alternative Medicine, 2021(1), 9940169. https://doi.org/10.1155/2021/9940169
Karganov, M. Y., Alchinova, I. B., Tinkov, A. A., Medvedeva, Y. S., Lebedeva, M. A., Ajsuvakova, O. P., Polyakova, M. V., Skalnaya, M. G., Burtseva, T. I., Notova, S. V., & Khlebnikova, N. N. (2020). Streptozotocin (STZ)-induced diabetes affects tissue trace element content in rats in a dose-dependent manner. Biological Trace Element Research, 198, 567-574. https://doi.org/10.1007/s12011-020-02090-2
Kurek, J. M., & Krejpcio, Z. (2019). The functional and health-promoting properties of Stevia rebaudiana Bertoni and its glycosides with special focus on the antidiabetic potentialA review. Journal of Functional Foods, 61, 103465. https://doi.org/10.1016/j.jff.2019.103465
Latha, S., Chaudhary, S., & Ray, R. S. (2017). Hydroalcoholic extract of Stevia rebaudiana bert. leaves and stevioside ameliorates lipopolysaccharide induced acute liver injury in rats. Biomedicine & Pharmacotherapy, 95, 1040-1050. https://doi.org/10.1016/j.biopha.2017.08.082 .
Li, H., Xu, Q., Xu, C., Hu, Y., Yu, X., Zhao, K., ... & Kuang, H. (2021). Bicyclol regulates hepatic gluconeogenesis in rats with type 2 diabetes and non-alcoholic fatty liver disease by inhibiting inflammation. Frontiers in Pharmacology, 12, 644129. https://doi.org/10.3389/fphar.2021.644129
Lian, C. Y., Zhai, Z. Z., Li, Z. F., & Wang, L. (2020). High fat diet-triggered non-alcoholic fatty liver disease: A review of proposed mechanisms. Chemico-biological interactions, 330, 109199. https://doi.org/10.1016/j.cbi.2020.109199
Loureno S.C., Moldo-Martins M., Alves V.D. Antioxidants of natural plant origins: From sources to food industry applications. Molecules. 2019;24:4132. https://doi.org/10.3390/molecules24224132
Masenga, S. K., Kabwe, L. S., Chakulya, M., & Kirabo, A. (2023). Mechanisms of oxidative stress in metabolic syndrome. International journal of molecular sciences, 24(9), 7898. https://doi.org/10.3390/ijms24097898
Oluba, O. M., Adebiyi, F. D., Dada, A. A., Ajayi, A. A., Adebisi, K. E., Josiah, S. J., & Odutuga, A. A. (2019). Effects of Talinum triangulare leaf flavonoid extract on streptozotocin-induced hyperglycemia and associated complications in rats. Food Science & Nutrition, 7(2), 385-394. https://doi.org/10.1002/fsn3.765
Ong, K. L., Stafford, L. K., McLaughlin, S. A., Boyko, E. J., Vollset, S. E., Smith, A. E., ... & Brauer, M. (2023). Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021. The Lancet, 402(10397), 203-234. https://doi.org/10.1016/S0140-6736(23)01301-6
Poprac P., Jomova K., Simunkova M., Kollar V., Rhodes C.J., Valko M. Targeting Free Radicals in Oxidative Stress-Related Human Diseases. Trends Pharmacol. Sci. 2017;38:592607. https://doi.org/10.1016/j.tips.2017.04.005
Prabhakar, P. K. (2024). Glucose to Complications: Understanding Secondary Effects in Diabetes Mellitus. Sumatera Medical Journal, 7(2), 87-95. https://doi.org/10.32734/sumej.v7i2.15998
Raina, J., Firdous, A., Singh, G., Kumar, R., & Kaur, C. (2024). Role of polyphenols in the management of diabetic complications. Phytomedicine, 122, 155155. https://doi.org/10.1016/j.phymed.2023.155155
Schmedes, A., & Hlmer, G. (1989). A new thiobarbituric acid (TBA) method for determining free malondialdehyde (MDA) and hydroperoxides selectively as a measure of lipid peroxidation. Journal of the American Oil Chemists' Society, 66(6), 813-817.
Sharifi-Rad, M., Anil Kumar, N. V., Zucca, P., Varoni, E. M., Dini, L., Panzarini, E., ... & Sharifi-Rad, J. (2020). Lifestyle, oxidative stress, and antioxidants: back and forth in the pathophysiology of chronic diseases. Frontiers in physiology, 11, 694. https://doi.org/10.3389/fphys.2020.00694
Shibib, L., Al-Qaisi, M., Guess, N., Miras, A. D., Greenwald, S. E., Pelling, M., & Ahmed, A. (2024). Manipulation of Post-Prandial Hyperglycaemia in Type 2 Diabetes: An Update for Practitioners. Diabetes, Metabolic Syndrome and Obesity, 3111-3130. https://doi.org/10.2147/DMSO.S458894
Singh, V., Akansha, Islam, Z., & Shaida, B. (2023). Medicinal Plants: Sustainable Scope to Nutraceuticals. In Sustainable Food Systems (Volume II) SFS: Novel Sustainable Green Technologies, Circular Strategies, Food Safety & Diversity (pp. 205-236). Cham: Springer Nature Switzerland.
Sultana, N., Saini, P. K., Kiran, S. R., & Kanaka, S. (2023). Exploring the antioxidant potential of medicinal plant species: A comprehensive review. Journal of Plant Biota. http://dx.doi.org/10.51470/JPB.2023.02.02.09
Wei, F., Zhu, H., Li, N., Yu, C., Song, Z., Wang, S., ... & Sun, L. (2021). Stevioside activates AMPK to suppress inflammation in macrophages and protects mice from LPS-induced lethal shock. Molecules, 26(4), 858. https://doi.org/10.3390/molecules26040858
Zhao, C., Yang, C., Wai, S. T. C., Zhang, Y., P. Portillo, M., Paoli, P., ... & Cao, H. (2019). Regulation of glucose metabolism by bioactive phytochemicals for the management of type 2 diabetes mellitus. Critical Reviews in Food Science and Nutrition, 59(6), 830-847. https://doi.org/10.1080/10408398.2018.1501658
Zhao, X., An, X., Yang, C., Sun, W., Ji, H., & Lian, F. (2023). The crucial role and mechanism of insulin resistance in metabolic disease. Frontiers in endocrinology, 14, 1149239. https://doi.org/10.3389/fendo.2023.1149239
Zou, X., Tan, Q., Goh, B. H., Lee, L. H., Tan, K. L., & Ser, H. L. (2020). Sweeterthan its name: anti-inflammatory activities of Stevia rebaudiana. All Life, 13(1), 286-309. https://doi.org/10.1080/26895293.2020.1771434
Published
How to Cite
Issue
Section
FUDMA Journal of Sciences