BANDWIDTH ENHANCEMENT IN DOHERTY POWER AMPLIFIERS: A COMPARISON OF CONVENTIONAL AND INVERTED ARCHITECTURES
Abstract
Conventional Doherty power amplifiers (DPAs) face bandwidth issues due to poor impedance matching and input phase design. This paper explores ways to enhance DPA performance in frequency response. The study focuses on optimizing output matching network parameters and the input phase slope between main and auxiliary amplifiers to improve bandwidth efficiency, especially for mobile wireless applications.We calculate the voltage standing wave ratio (VSWR) for each DPA amplification stage at different power levels using MATLAB. We examine conventional and inverted DPA configurations at 2.5 GHz within the 2 GHz to 3 GHz range, utilizing an NXP GaN-based FET transistor model. The two-stage architectures include main amplifiers in Class B and auxiliary in Class C modes, analyzed at peak and back-off levels. Our results indicate that the inverted Doherty amplifier achieves a 40% fractional bandwidth compared to the 8% of the conventional DPA at a VSWR of 1.2, showing better performance due to greater parameter flexibility. These findings are significant for improving RF efficiency in 5G base stations and future wireless networks.
References
Abdoul-Aziz, A.A., et al., (2024). Design and performance of a 2.4 GHz High Efficiency Power Amplifiers Using GaN HEMT for 5G Applications. SSRG International Journal of Electrical and Electronics Engineering.
Abbas, N., et al., (2022). Broadband Class-J GaN Doherty Power Amplifier. Electronics Journal
Abubakar, N., et al., (2023). High Efficiency Broadband Class-E Power Amplifier Design Using Synthesized Low-Pass Matching Networks. FUDMA Journal of Sciences. Pp. 159-165.
Chao, M., (2023). Current State and Advanced Architectures of Doherty Power Amplifiers. 5th International Conference on Mechanical Automation and Materials Engineering, Vol.62. DOI: https://doi.org/10.54097/hset.v62i.10422
Cavarroc, M., et al., (2023). Compact 40% Fractional Bandwidth Doherty PA with Input Group Delay Engineering. IEEE MTT-S International Microwave Symposium (IMS 2023), Vol.33, No.6, San Diego, CA, USA DOI: https://doi.org/10.1109/LMWT.2023.3266095
Doherty, W.H., (1936). A new high-efficiency amplifier for modulated waves. Proceeding of the IRE, vol.24, no.9 DOI: https://doi.org/10.1109/JRPROC.1936.228468
DUBUC, N., Duvanaud, C., and Bouysse, P., (2002). Analysis of the Doherty technique and application to a 900 MHz power amplifier. amsacta.unibo.it/id/eprint/434/1/JGM3_Dubuc.pdf DOI: https://doi.org/10.1109/EUMA.2002.339231
Edmund Neo, W.C., et al., (2007). A Mixed-Signal Approach Towards Linear and Efficient N-Way Doherty Amplifiers. IEEE Transactions on Microwave Theory and Techniques, vol. 55, no. 5, pp. 866-879 DOI: https://doi.org/10.1109/TMTT.2007.895160
fr.mathworks.com, (2022). Optimization Toolbox. (nd) Retrieved from: http://www.fr.mathworks.com/help/optim/index.html
Gareth, L., (2019). Optimizing the Perennial Doherty Power Amplifier. Microwave Journal.
Gustafsson, D., (2014). Extending the Bandwidth of the Doherty Power Amplifier. PhD thesis dissertation at Microwave Electronics Laboratory, Department of Microtechnology and Nanoscience-MC2 Chalmers University of Technology Gothenburg, Sweden
Hanhui, L., et al., (2024). Analysis and design of broadband Doherty power amplifier using Parameterized load modulation network and complex combining load. AEU- International Journal of Electronics and Communications.
Iwamoto, M., Williams, A., Pin-Fan, C., Metzger, A.G., Larson, L.E., and Asbeck, P.M., (2001). An Extended Doherty Amplifier with High Efficiency Over a Wide Power Range, IEEE Transactions on Microwave Theory and Techniques, vol. 49, no. 12, pp. 2472-2479 DOI: https://doi.org/10.1109/22.971638
Kang, D., Kim, D., Cho, Y., Park, B., Kim, J., and and Kim, B., (2011). Design of Bandwidth-Enhanced Doherty Power Amplifiers for Handset Applications. IEEE Trans. Microwave Theory Tech., vol. 59, no. 12, pp. 3474 3483 DOI: https://doi.org/10.1109/TMTT.2011.2171042
Kerherve, E., (2005). Linearization and Efficiency Enhancement Techniques for Silicon Power Amplifiers from RF to mmW. Elsevier Inc., pp.83
Kim, B., Kim, I., and Moon, J., (2010). Advanced Doherty Architecture. IEEE Microwave Journal, vol. 11, no. 5, pp. 72-86 DOI: https://doi.org/10.1109/MMM.2010.937098
Kumar, A., et al., (2022). Broadband and Efficient Doherty Power Amplifier by Influencing Output Impedance of Auxiliary Power Amplifier and Optimizing Impedance of Quarter-Wave Transmission Line. 2022 IEEE Microwaves, Antennas, and Propagation Conference (MAPCON) DOI: https://doi.org/10.1109/MAPCON56011.2022.10047110
Li, M., Pang, J., Li, Y., Zhu, A., (2020). Bandwidth Enhancement of Doherty Power Amplifier Using Modified Load Modulation Network. IEEE Transactions on Microwave Theory and Techniques, vol. 67, no. 6, pp. 1824-1834
Lagarias, J.C., et al., (1998). Convergence properties of the Nelder- Mead Simplex Method in low Dimensions. SIAM Journal of Optimization, Vol.9, Number 1, pp.112-147. DOI: https://doi.org/10.1137/S1052623496303470
Meng, L., et al., (2020). Bandwidth Enhancement of Doherty Power Amplifier Using Modified Load Modulation Network. IEEE Transactions on Circuits and Systems 1: Regular papers, Volume 67, issue 6. DOI: https://doi.org/10.1109/TCSI.2020.2972163
Nasri, A., et al., (2021). Design of a wideband Doherty power amplifier with high efficiency for 5G applications. Electronics Journal, 10,873 DOI: https://doi.org/10.3390/electronics10080873
Nikandish, G., and Zhu, A., (2019). Breaking Bandwidth Limit: A Review of Broadband Doherty Power Amplifier Design for 5G. IEEE Microwave Magazine DOI: https://doi.org/10.1109/MMM.2019.2963607
Quresh, J. H., Li, N., Neo, W. C. E., van Rijs, F., Blednov, I., and de Vreede, L. C. N., (2010). A wide band 20W LMOS Doherty power amplifier. in IEEE Int. Microwave Symp. Dig., pp. 15041507 DOI: https://doi.org/10.1109/MWSYM.2010.5517561
Raab, F.H., (1987). Efficiency of Doherty RF Power-Amplifier Systems. IEEE Transactions on Broadcasting, vol. BC-33, no.3, pp.77-83 DOI: https://doi.org/10.1109/TBC.1987.266625
Saeedeh, M., et al., (2023). A Review of Doherty Power Amplifier and Load Modulated Balanced Amplifier for 5G Technology. International Journal of Circuit Theory and Applications.
The Mathworks, Inc., (2018). Solving optimization problems with MATLAB. Retrieved from: https://www.matlabexpo.com/content/dam/mathworks/mathworks-dot-
The Mathworks, (2001). Optimization Toolbox for use with MATLAB. Mathworks, Inc
Wong, J., Watanabe, N., and Grebennikov, A., (2018). High-power high-efficiency broadband GaN HEMT Doherty amplifiers for base station applications. 2018 IEEE Topical Conference on RF/Microwave Power Amplifiers for Radio and Wireless Applications (PAWR), pp. 16-19 DOI: https://doi.org/10.1109/PAWR.2018.8310055
Yahyavi, M., (2016). On the design of high-efficiency RF Doherty power amplifiers. PhD dissertation at Technical University of Catalonia (UPC), BarcelonaTECH
Copyright (c) 2025 FUDMA JOURNAL OF SCIENCES

This work is licensed under a Creative Commons Attribution 4.0 International License.
FUDMA Journal of Sciences