EVIDENCE OF ANOPHELES RESISTANCE TO PYRETHROID PESTICIDES: REPORT FROM GADAU KATAGUM ENDEMIC REGION BAUCHI STATE, NIGERIA
Abstract
Malaria continues to pose a significant health issue negatively. The high number of cases requires prevention, including controlling the Anopheles gambiae s.l., mosquito. One of the control methods is the use of insecticides containing pyrethrin. WHO tube Bioassays in Anopheles gambiae s.l., to determine resistance from pyrethroids expose in F1 adult mosquitoes to insecticides and a sensitivity test to temephos, measuring the activity of non-specific alpha and beta esterase enzymes. This study determined Anopheles gambiae s.l., resistance from larvae to adult. The bioassay was used for the temephos sensitivity of Anopheles larvae. The LC99 value was analyzed using probit and compared with the diagnostic. WHO susceptibility test was conducted to determine pyrethroid resistance from adult mosquitoes. A mortality of less than 90% was declared as resistant. Measurement of alpha and beta esterase levels used Lee's microplate assay technique based on visual identification and absorbance value. Anopheles gambiae s.l., were resistant to both class of pyrethroids. Adult mosquitoes have recorded resistant to both class of type i and ii pyrethroid with increase in time reaching about 60% with cypermethrin. At 24 hours Mortality Rates showed Cypermethrin with the highest at 90% followed by Permethrin (80%), Deltamethrin (75%), and Tetramethrin (70%). Based on the alpha esterase activity test, it was found that most of the mosquitoes showed very sensitive meanwhile, most of the mosquitoes were moderate resistance. This study suggests that Anopheles gambiae s.l., the population from the endemic region in Bauchi, Nigeria are indicated to develop resistance to the pyrethroids insecticides.
References
Busari, L. O., Raheem, H. O., Iwalewa, Z. O., Fasasi, K. A., & Adeleke, M. A. (2023). Investigating insecticide susceptibility status of adult mosquitoes against some classes of insecticides in Osogbo metropolis, Osun State, Nigeria. PLOS ONE, 18(5), e0285605. https://doi.org/10.1371/journal.pone.0285605 DOI: https://doi.org/10.1371/journal.pone.0285605
Charles, M., Riveron, M. J., Ibrahim, S. S., Irving, H., Barnes, K. G., Mukwaye, L. G., Birungi, J., & Wondji, C. S. (2014). Widespread pyrethroid and DDT resistance in the major malaria vector Anopheles funestus in East Africa is driven by a metabolic resistance mechanism. PLOS ONE, 9(10), e110058. DOI: https://doi.org/10.1371/journal.pone.0110058
Federal Ministry of Health. (2015). National Malaria Strategic Plan 20212025. National Malaria Elimination Programme. https://nmcp.gov.ng/
Gillies, M. T., & Coetzee, M. (1987). A supplement to the Anophelinae of Africa South of the Sahara (Afro-tropical). South African Institute for Medical Research, 55, 1143.
Habibu, U. A., Yayo, A. M., & Yusuf, Y. D. (2017). Susceptibility status of Anopheles gambiae complex to insecticides commonly used for malaria control in Northern Nigeria. International Journal of Scientific and Technology Research, 6(6), 4754.
Hakizimana, E., Karema, C., Munyakanage, D., Iranzi, G., Githure, J., Tongren, J. E., Takken, W., Binagwaho, A., & Koenraadt, C. J. M. (2016). Susceptibility of Anopheles gambiae to insecticides used for malaria vector control in Rwanda. Malaria Journal. https://doi.org/10.1186/s12986-016-1618-6 DOI: https://doi.org/10.1186/s12936-016-1618-6
Hassan, S. C., Olayinka, M. D., Ombugadu, R. J., Abdul, S., Luka, J., Petrus, U. I., et al. (2018). Susceptibility of female Anopheles mosquito to pyrethroid (Alphacympermethrin 0.5%) and Carbamate (Propoxur 0.1%) in Keffi Local Government Area of Nasarawa State, north-central Nigeria. Niger Journal of Parasitology, 39(1), 1. DOI: https://doi.org/10.4314/njpar.v39i1.5
Ibrahim, K. T., Popoola, K. O., Adewuyi, O. R., Adeogun, A. O., & Oricha, A. K. (2013). Susceptibility of Anopheles gambiae sensu lato (Diptera: Culicidae) to Permethrin, Deltamethrin and Bendiocarb in Ibadan City, Southwest Nigeria. Current Research Journal of Biological Sciences, 5(2), 4248. DOI: https://doi.org/10.19026/crjbs.5.5471
Ibrahim, S. S., Mukhtar, M. M., Datti, J. A., Irving, H., Kusimo, M. O., Tchapga, W., Lawal, N., Sambo, F. I., & Wondji, C. S. (2019). Temporal escalation of pyrethroid resistance in the major malaria vector Anopheles coluzzii from Sahelo-Sudanian Region of Northern Nigeria. Scientific Reports, 9(1), 111. https://doi.org/10.1038/s41598-019-43634-4 DOI: https://doi.org/10.1038/s41598-019-43634-4
Kendie, F. A., Wale, M., Nibret, E., & Ameha, Z. (2023). Insecticide susceptibility status of Anopheles gambiae (s.l.) in and surrounding areas of Lake Tana, northwest Ethiopia. Tropical Medicine and Health, 51(1). https://doi.org/10.1186/s41182-023-00497-w DOI: https://doi.org/10.1186/s41182-023-00497-w
Kleinschmidt, I., Schwabe, C., Shiva, M., Segura, J. L., Sima, V., Mabunda, S. J., & Coleman, M. (2009). Combining indoor residual spraying and insecticide-treated net interventions. The American Journal of Tropical Medicine and Hygiene, 81(3), 519523. DOI: https://doi.org/10.4269/ajtmh.2009.81.519
Kouam, R. M. A., Guglielmo, F., Abo, K., Ouattara, A. F., Chabi, J., Sedda, L., Donnelly, M. J., & Edi, C. (2022). Education and socio-economic status are key factors influencing use of insecticides and malaria knowledge in rural farmers in Southern Cte dIvoire. BMC Public Health, 22(1), 111. https://doi.org/10.1186/s12889-022-14446-5 DOI: https://doi.org/10.1186/s12889-022-14446-5
Lee, H.L. (1990). Rapid and simple biochemical methode for detection of insecticide due to elevate esterase activity in Culex quenquefasciatus. Tropical Biomedicine, 7, 2126.
Machani, M. G., Ochomo, E., Zhong, D., Zhou, G., Wang, X., Githeko, A. K., & Yan, G. (2020). Phenotypic, genotypic and biochemical changes during pyrethroid resistance selection in1 Anopheles gambiae mosquitoes. Scientific Reports, 10, 19063. DOI: https://doi.org/10.1038/s41598-020-75865-1
Mahe, A., Alhassan, A. J., Ononamadu, C. J., Lawal, N., Bichi, S. A., & Imam, A. A. (2022). Pyrethroid resistance in the Sudan Savannah Region in Nigeria: A study of the resistance profile and resistance mechanism of Anopheles populations from Hadejia Town in Jigawa State. Ife Journal of Science, 24(2), 189198.
Mukhtar, M. M., & Ibrahim, S. S. (2022). Temporal evaluation of insecticide resistance in populations of the major arboviral vector Aedes aegypti from Northern Nigeria. Insects, 13(2), 187. DOI: https://doi.org/10.3390/insects13020187
Muhammad, S. S., Dalis, D. Y., Ibrahim, A. U., & Zubair, A. A. (2024). High prevalence of Aedes aegypti resistance to carbamate, organochloride, and pyrethroid (COP) pesticides in Adonkolo Campus Federal University Lokoja, Kogi State, Nigeria. GSC Biological and Pharmaceutical Sciences, 28(3), 158168. https://doi.org/10.30574/gscbps.2024.28.3.0323 DOI: https://doi.org/10.30574/gscbps.2024.28.3.0323
NDri, B. P., Wipf, N. C., Saric, J., Fodjo, B. K., Raso, G., Utzinger, J., Mller, P., & Mouhamadou, C. S. (2023). Species composition and insecticide resistance in malaria vectors in Ellibou, southern Cte dIvoire and first finding of Anopheles arabiensis in Cte dIvoire. Malaria Journal, 22(1), 113. https://doi.org/10.1186/s12936-023-04456-y DOI: https://doi.org/10.1186/s12936-023-04456-y
Ngufor, C., Critchley, J., Fagbohoun, J., & Guessan, R. N. (2016). Chlorfenapyr (A Pyrrole Insecticide) applied alone or as a mixture with alpha-cypermethrin for indoor residual spraying against pyrethroid resistant Anopheles gambiae Sl: an experimental hut study. 114. DOI: https://doi.org/10.1371/journal.pone.0162210
Nigeria Malaria Indicator Survey. (2021). Nigeria Malaria Indicator Survey 2021. National Malaria Control Programme, ICF International.
Ochomo, E. O., Bayoh, N. M., Walker, E. D., Abongo, B. O., Ombok, M. O., Ouma, C., ... & Vulule, J. M. (2013). The efficacy of long-lasting nets with declining physical integrity may be compromised in areas with high levels of pyrethroid resistance. Malaria Journal, 12, 368. DOI: https://doi.org/10.1186/1475-2875-12-368
Ohiri, K., Ukoha, N. K., Nwangwu, C. W., Chima, C. C., Ogundeji, Y. K., Rone, A., & Reich, M. R. (2016). An assessment of data availability, quality, and use in malaria program decision making in Nigeria. Health Systems & Reform, 2(3), 319330. DOI: https://doi.org/10.1080/23288604.2016.1234864
President's Malaria Initiative (PMI). (2018). U.S. President's Malaria Initiative Technical Guidelines.
Ranson, H., & Lissenden, N. (2016). Insecticide resistance in African Anopheles mosquitoes: A worsening situation that needs urgent action to maintain malaria control. Trends in Parasitology, 32(3), 187196. DOI: https://doi.org/10.1016/j.pt.2015.11.010
Umar, A., Kabir, B. G., Abdullahi, M. B., Barde, A., Misau, A. A., & Sambo, M. L. (2015). Assessment of indoor resting density of female anopheline mosquitoes in human dwellings at malaria vector sentinel sites in Bauchi State, Nigeria. Advances in Studies in Biology, 7(7), 323333. http://dx.doi.org/10.12988/asb.2015.5210 DOI: https://doi.org/10.12988/asb.2015.5210
World Health Organization. (2022). World Malaria Report. WHO Global Malaria.
World Health Organization. (2016). Test procedures for insecticide resistance monitoring in malaria vector mosquitoes (2nd Ed.). World Health Organization.
World Health Organization. (2020). World Malaria Report. World Health Organization.
Copyright (c) 2025 FUDMA JOURNAL OF SCIENCES

This work is licensed under a Creative Commons Attribution 4.0 International License.
FUDMA Journal of Sciences