ADVANCEMENTS IN FEDERATED LEARNING FOR SECURE DATA SHARING IN FINANCIAL SERVICES

  • Nkem Belinda Unuigbokhai Wellspring University, Edo State
  • Godfrey Perfectson Oise Wellspring University, Edo State
  • Babalola Eyitemi Akilo Wellspring University, Edo State
  • Onyemaechi Clement Nwabuokei Delta State College of Education, Mosogar
  • Joy Akpowehbve Odimayomi Wellspring University, Edo State
  • Sofiat Kehinde Bakare University of Benin
  • Onoriode Michaele Atake Western Delta University, Oghara
Keywords: Anti-Money Laundering (AML), Data Privacy, Differential Privacy (DP), Federated Learning (FL), Homomorphic Encryption (HE), Loan Default Prediction, Secure Multi-Party Computation (SMPC)

Abstract

This paper explores the application of Federated Learning (FL) in the financial sector, focusing on enhancing security and privacy in key areas such as fraud detection, Anti-Money Laundering (AML) compliance, and biometric authentication systems. FL enables collaborative model training across multiple financial institutions without sharing sensitive transaction data, thereby preserving privacy while improving the accuracy of fraud detection models. In AML compliance, FL facilitates the development of robust models by leveraging diverse datasets, enhancing the ability to detect suspicious activities. Moreover, FL strengthens biometric authentication systems by decentralizing model training, reducing the risks of data breaches, and ensuring compliance with privacy regulations. The paper also evaluates the performance of a loan default prediction model trained using FL, highlighting challenges with class imbalance and model bias toward the majority class. The classification report indicates high recall (98%) but also shows a potential for misclassifying non-default cases, leading to a moderate precision (81%) and an F1-score of 89%. The model's AUC of 0.69 suggests moderate discriminatory power, with room for improvement in its ability to differentiate between default and non-default cases. The model achieves an overall accuracy of 80%. Despite these challenges, it demonstrates good generalization capabilities while maintaining the privacy of client data, presenting a promising approach to secure financial transaction analysis.

References

Abdulrahman, S., Tout, H., Ould-Slimane, H., Mourad, A., Talhi, C., & Guizani, M. (2021). A Survey on Federated Learning: The Journey From Centralized to Distributed On-Site Learning and Beyond. IEEE Internet of Things Journal, 8(7), 54765497. https://doi.org/10.1109/JIOT.2020.3030072 DOI: https://doi.org/10.1109/JIOT.2020.3030072

Aledhari, M., Razzak, R., Parizi, R. M., & Saeed, F. (2020). Federated Learning: A Survey on Enabling Technologies, Protocols, and Applications. IEEE Access, 8, 140699140725. https://doi.org/10.1109/ACCESS.2020.3013541 DOI: https://doi.org/10.1109/ACCESS.2020.3013541

Chen, H., Wang, H., Long, Q., Jin, D., & Li, Y. (2023). Advancements in Federated Learning: Models, Methods, and Privacy (Version 2). arXiv. https://doi.org/10.48550/ARXIV.2302.11466 DOI: https://doi.org/10.1145/3664650

Fragulis, G. F., Papatsimouli, M., Lazaridis, L., & Skordas, I. A. (2021). An Online Dynamic Examination System (ODES) based on open source software tools. Software Impacts, 7, 100046. https://doi.org/10.1016/j.simpa.2020.100046 DOI: https://doi.org/10.1016/j.simpa.2020.100046

Godfrey Perfectson Oise. (2023). A Framework on E-Waste Management and Data Security System. International Journal on Transdisciplinary Research and Emerging Technologies, 1(1).

Gray, M., Fox, N., Gordon, J. E., Brilha, J., Charkraborty, A., Garcia, M. D. G., Hjort, J., Kubalkov, L., Seijmonsbergen, A. C., & Urban, J. (2024). Boundary of ecosystem services: A response to. Journal of Environmental Management, 351, 119666. https://doi.org/10.1016/j.jenvman.2023.119666 DOI: https://doi.org/10.1016/j.jenvman.2023.119666

Gu, M., Naraparaju, R., & Zhao, D. (2024). Enhancing Data Provenance and Model Transparency in Federated Learning SystemsA Database Approach (Version 1). arXiv. https://doi.org/10.48550/ARXIV.2403.01451

Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis, M., Bhagoji, A. N., Bonawitz, K., Charles, Z., Cormode, G., Cummings, R., DOliveira, R. G. L., Eichner, H., Rouayheb, S. E., Evans, D., Gardner, J., Garrett, Z., Gascn, A., Ghazi, B., Gibbons, P. B., Zhao, S. (2019). Advances and Open Problems in Federated Learning (Version 3). arXiv. https://doi.org/10.48550/ARXIV.1912.04977

Khan, L. U., Saad, W., Han, Z., Hossain, E., & Hong, C. S. (2021). Federated Learning for Internet of Things: Recent Advances, Taxonomy, and Open Challenges. IEEE Communications Surveys & Tutorials, 23(3), 17591799. https://doi.org/10.1109/COMST.2021.3090430 DOI: https://doi.org/10.1109/COMST.2021.3090430

Lazaridis, L., Papatsimouli, M., & Fragulis, G. F. (2019). A synchronous-asynchronous tele-education platform. International Journal of Smart Technology and Learning, 1(2), 122. https://doi.org/10.1504/IJSMARTTL.2019.097950 DOI: https://doi.org/10.1504/IJSMARTTL.2019.097950

Li, L., Fan, Y., Tse, M., & Lin, K.-Y. (2020). A review of applications in federated learning. Computers & Industrial Engineering, 149, 106854. https://doi.org/10.1016/j.cie.2020.106854 DOI: https://doi.org/10.1016/j.cie.2020.106854

Li, Z., He, S., Chaturvedi, P., Kindratenko, V., Huerta, E. A., Kim, K., & Madduri, R. (2024). Secure Federated Learning Across Heterogeneous Cloud and High-Performance Computing ResourcesA Case Study on Federated Fine-tuning of LLaMA 2 (arXiv:2402.12271). arXiv. https://doi.org/10.48550/arXiv.2402.12271 DOI: https://doi.org/10.1109/MCSE.2024.3382583

Mothukuri, V., Parizi, R. M., Pouriyeh, S., Huang, Y., Dehghantanha, A., & Srivastava, G. (2021). A survey on security and privacy of federated learning. Future Generation Computer Systems, 115, 619640. https://doi.org/10.1016/j.future.2020.10.007 DOI: https://doi.org/10.1016/j.future.2020.10.007

Nathan George. (2020). All Lending Club loan data [Dataset]. Kaggle online data repository. https://www.kaggle.com/datasets/wordsforthewise/lending-club

Nevrataki, T., Iliadou, A., Ntolkeras, G., Sfakianakis, I., Lazaridis, L., Maraslidis, G., Asimopoulos, N., & Fragulis, G. F. (2023). A survey on federated learning applications in healthcare, finance, and data privacy/data security. 120015. https://doi.org/10.1063/5.0182160 DOI: https://doi.org/10.1063/5.0182160

Nguyen, D. C., Ding, M., Pathirana, P. N., Seneviratne, A., Li, J., & Vincent Poor, H. (2021). Federated Learning for Internet of Things: A Comprehensive Survey. IEEE Communications Surveys & Tutorials, 23(3), 16221658. https://doi.org/10.1109/COMST.2021.3075439 DOI: https://doi.org/10.1109/COMST.2021.3075439

Oise, G. (2023). A Web Base E-Waste Management and Data Security System. RADINKA JOURNAL OF SCIENCE AND SYSTEMATIC LITERATURE REVIEW, 1(1), 4955. https://doi.org/10.56778/rjslr.v1i1.113 DOI: https://doi.org/10.56778/rjslr.v1i1.113

Oise, G., & Konyeha, S. (2024). E-WASTE MANAGEMENT THROUGH DEEP LEARNING: A SEQUENTIAL NEURAL NETWORK APPROACH. FUDMA JOURNAL OF SCIENCES, 8(3), 1724. https://doi.org/10.33003/fjs-2024-0804-2579 DOI: https://doi.org/10.33003/fjs-2024-0804-2579

Oise, G. P., & Konyeha, S. (2024). Deep Learning System for E-Waste Management. The 3rd International Electronic Conference on Processes, 66. https://doi.org/10.3390/engproc2024067066 DOI: https://doi.org/10.3390/engproc2024067066

Oise, G. P., Nwabuokei, O. C., Akpowehbve, O. J., Eyitemi, B. A., & Unuigbokhai, N. B. (2025). TOWARDS SMARTER CYBER DEFENSE: LEVERAGING DEEP LEARNING FOR THREAT IDENTIFICATION AND PREVENTION. FUDMA JOURNAL OF SCIENCES, 9(3), 122128. https://doi.org/10.33003/fjs-2025-0903-3264 DOI: https://doi.org/10.33003/fjs-2025-0903-3264

Papatsimouli, M., Lazaridis, L., Ziouzios, D., Dasygenis, M., & Fragulis, G. (2022). Internet Of Things (IoT) awareness in Greece. SHS Web of Conferences, 139, 03013. https://doi.org/10.1051/shsconf/202213903013 DOI: https://doi.org/10.1051/shsconf/202213903013

Rells, J., & Joseph, W. (2025). Federated Learning for Secure Financial Transactions. https://www.researchgate.net/publication/389389123

Tsakiris, G., Papadopoulos, C., Patrikalos, G., Kollias, K.-F., Asimopoulos, N., & Fragulis, G. F. (2022). The development of a chatbot using Convolutional Neural Networks. SHS Web of Conferences, 139, 03009. https://doi.org/10.1051/shsconf/202213903009 DOI: https://doi.org/10.1051/shsconf/202213903009

Yu, S., Muoz, J. P., & Jannesari, A. (2024). Federated Foundation Models: Privacy-Preserving and Collaborative Learning for Large Models (arXiv:2305.11414). arXiv. https://doi.org/10.48550/arXiv.2305.11414

Zacharis, G., Gadounas, G., Tsirtsakis, P., Maraslidis, G., Assimopoulos, N., & Fragulis, G. (2022). Implementation and Optimization of Image Processing Algorithm using Machine Learning and Image Compression. SHS Web of Conferences, 139, 03014. https://doi.org/10.1051/shsconf/202213903014 DOI: https://doi.org/10.1051/shsconf/202213903014

Zelios, A., Grammenos, A., Papatsimouli, M., Asimopoulos, N., & Fragulis, G. (2022). Recursive neural networks: Recent results and applications. SHS Web of Conferences, 139, 03007. https://doi.org/10.1051/shsconf/202213903007 DOI: https://doi.org/10.1051/shsconf/202213903007

Zhang, Y., Bai, G., Li, X., Nepal, S., & Ko, R. K. L. (2021). Confined Gradient Descent: Privacy-preserving Optimization for Federated Learning (Version 1). arXiv. https://doi.org/10.48550/ARXIV.2104.13050

Published
2025-05-31
How to Cite
Unuigbokhai, N. B., Oise, G. P., Akilo, B. E., Nwabuokei, O. C., Odimayomi, J. A., Bakare, S. K., & Atake, O. M. (2025). ADVANCEMENTS IN FEDERATED LEARNING FOR SECURE DATA SHARING IN FINANCIAL SERVICES. FUDMA JOURNAL OF SCIENCES, 9(5), 80 - 86. https://doi.org/10.33003/fjs-2025-0905-3207