GENETIC ANALYSIS OF SEED SIZE AND SEED RELATED TRAITS IN SELECTED GROUNDNUT (Arachis hypogaea L.) GENOTYPES
Abstract
Breeding groundnut genotypes with larger seed size enhances consumer appeal. This study investigated the genetic variability, inheritance, and relationships of seed size and yield-related traits in Arachis hypogaea L. using a five-parameter genetic model and correlation analysis. Two crosses, ICGV 188105 × Samnut 24 (Cross 1) and its reciprocal (Cross 2), were evaluated to F3 generations at Institute for Agricultural Research (IAR), Samaru, during the 2021/2022 season. Significant variation was observed for seed size (SS1.506 mm), seed length (SL; 11.187 mm), seed width (SW; 7.409 mm), pod length (PL; 26.978 mm), hundred seed weight (100-SW; 42.705 g), and hundred pod weight (100-PW; 93.238 g). High broad-sense heritability (H² > 70%) and moderate to high phenotypic (PCV: 6.33%–38.36%) and genotypic coefficients of variation (GCV: 5.89%–38.79%) suggest strong potential for genetic improvement, particularly in Cross 2. Additive, dominance, and epistatic effects were significant for seed size and related traits, indicating complex genetic control. Strong positive correlations (p < 0.001) were observed between SS and SL (r = 0.87–0.90), SW (r = 0.85–0.91), 100-SW (r = 0.81–0.83), and 100-PW (r = 0.69–0.93), while flowering time showed weak, non-significant associations. These findings highlight promising opportunities for selecting larger seeds and related traits while allowing independent manipulation of flowering time. We recommend implementing recurrent selection to capitalize on additive effects while maintaining heterozygosity, with Cross 2 showing superior potential for developing varieties with larger seeds and higher yield simultaneously.
References
Ahamed KU, Akter B, Ara N, Hossain MF, Moniruzzaman M (2015) Heritability, Correlation and Path Coefficient Analysis in Fifty Seven Okra Genotypes. International Journal of Applied Sciences and Biotechnology 3 (1):127-133. https://doi.org/10.3126/ijasbt.v3i1.12142 DOI: https://doi.org/10.3126/ijasbt.v3i1.12142
Ajeigbe HA, Waliyar F, Echekwu CA, Kunihya A, Motagi BN, Eniaiyeju D, Inuwa A (2015) A farmers guide to profitable groundnut production in Nigeria.
Alam M, Uk N, Mak A, Ma A, Aa K (2013) Genetics of yield and related traits in groundnut using diallel analysis. Bulletin of the Institute of Tropical Agriculture, Kyushu University 36 (1):045-059
Anwar Malik MF, Tariq K, Qureshi AS, Khan MR, Ashraf M, Naz G, Ali A (2016) Analysis of genetic diversity of soybean germplasm from five different origins using RAPD markers. Acta Agriculturae Scandinavica, Section B Soil & Plant Science 67 (2):148-154. https://doi.org/10.1080/09064710.2016.1236213 DOI: https://doi.org/10.1080/09064710.2016.1236213
Balaiah C, Reddy PS, Reddi MV (1977) Genic analysis in groundnut. Proceedings / Indian Academy of Sciences 85 (5):340-350. https://doi.org/10.1007/bf03052386 DOI: https://doi.org/10.1007/BF03052386
Burton Urton CW, Devane EH (1953) Estimating heritability in tall Festuca (Restucaarundinaceae) from donar material. Agron J 45:1476-1481 DOI: https://doi.org/10.2134/agronj1953.00021962004500100005x
Camino, F. J. S., & Vucinich, W. S. (2022). Detection of a major QTL and development of KASP markers for seed weight by combining QTL-seq, QTL-mapping and RNA-seq in peanut. Theoretical and Applied Genetics, 135(5), 17791795. https://doi.org/10.1007/s00122-022-04069-0 DOI: https://doi.org/10.1007/s00122-022-04069-0
Chinnasamy GP, Sundareswaran S, Raja K, Renganayaki PR, Subramaniyan KS, Marimuthu S, Pradeep D (2022) Fingerprinting of Volatile Organic Compounds as an Advance Technology to Assess the Seed Quality of Groundnut Through Correlation and Principal Component Analysis Method. LEGUME RESEARCH - AN INTERNATIONAL JOURNAL (Of). https://doi.org/10.18805/lr-4993 DOI: https://doi.org/10.18805/LR-4993
Eevera T, Chinnasamy GP, Venkatesan S, Navamaniraj KN, Albert VA, Anandhan J (2023) Attenuated Total Reflectance - Fourier Transform Infrared (ATR-FTIR) Spectroscopy: A Tool to Determine Groundnut Seed Quality. LEGUME RESEARCH - AN INTERNATIONAL JOURNAL (Of). https://doi.org/10.18805/lr-5120 DOI: https://doi.org/10.18805/LR-5120
El Hosary A (2020) Estimation of Gene Action and Heterosis in F1 And F2 Diallel Crosses among Seven Genotypes of Field Bean. Journal of Plant Production 11 (12):1383-1391. https://doi.org/10.21608/jpp.2020.149810 DOI: https://doi.org/10.21608/jpp.2020.149810
Fang, Y., Liu, H., Sun, Z., Qin, L., Zheng, Z., Qi, F., Wu, J., Dong, W., Huang, B., & Zhang, X. (2024). Co-localization of quantitative trait loci for pod and kernel traits and development of molecular marker for kernel weight on chromosome Arahy05 in peanut (Arachis hypogaea L.). Theoretical and Applied Genetics, 137(11). https://doi.org/10.1007/s00122-024-04749-z DOI: https://doi.org/10.1007/s00122-024-04749-z
Gnanasekaran M, P S, M G, K T, A Y (2024) Selection parameters for the improvement of seed yield and attributes in cowpea (Vigna unguiculata L. Walp.). Electronic Journal of Plant Breeding 15 (3):758-764. https://doi.org/10.37992/2024.1503.087 DOI: https://doi.org/10.37992/2024.1503.087
Guo F, Zhu X, Zhao C, Zhao S, Pan J, Zhao Y, Wang X, Hou L (2022) Transcriptome Analysis and Gene Expression Profiling of the Peanut Small Seed Mutant Identified Genes Involved in Seed Size Control. Int J Mol Sci 23 (17):9726. https://doi.org/10.3390/ijms23179726 DOI: https://doi.org/10.3390/ijms23179726
Hill WG, Mackay TFC (2004) D. S. Falconer and Introduction to quantitative genetics. Genetics 167 (4):1529-1536. https://doi.org/10.1093/genetics/167.4.1529 DOI: https://doi.org/10.1093/genetics/167.4.1529
Ibrahim M, Ibrahim HY, Jamiu WM (2023) Impact of improved groundnut varieties adoption on income, food security and nutrition of farming households in Katsina State, Nigeria. Agricultura Tropica et Subtropica 56 (1):92-99. https://doi.org/10.2478/ats-2023-0011 DOI: https://doi.org/10.2478/ats-2023-0011
Islam MA, Raffi SA, Hossain MA, Hasan AK (2015) Analysis of genetic variability, heritability and genetic advance for yield and yield associated traits in some promising advanced lines of rice. Progressive Agriculture 26 (1):26-31. https://doi.org/10.3329/pa.v26i1.24511 DOI: https://doi.org/10.3329/pa.v26i1.24511
Jou-Nteufa C (2022) Determination of Some Agricultural Characters and Their Heredity Through Diallel Analysis Method in Cowpea. DOI: https://doi.org/10.15316/SJAFS.2022.039
Joshi, P., Soni, P., Manohar, S. S., Kumar, S., Sharma, S., Pasupuleti, J., Vadez, V., Varshney, R., Pandey, M. K., & Puppala, N. (2024). Genome-Wide Mapping of Quantitative Trait Loci for Yield-Attributing Traits of Peanut. Genes. https://doi.org/10.3390/genes15020140 DOI: https://doi.org/10.3390/genes15020140
Khedikar Y, Pandey MK, Sujay V, Singh S, Nayak SN, Klein-Gebbinck HW, Sarvamangala C, Mukri G, Garg V, Upadhyaya HD (2018) Identification of main effect and epistatic quantitative trait loci for morphological and yield-related traits in peanut (Arachis hypogaea L.). Molecular breeding 38:1-12 DOI: https://doi.org/10.1007/s11032-017-0764-z
Kulus D (2021) Genetic Diversity for Breeding Tomato. Cash Crops. Springer International Publishing. https://doi.org/10.1007/978-3-030-74926-2_13 DOI: https://doi.org/10.1007/978-3-030-74926-2_13
Kuru DB (2021) Genetic variability and association of traits in durum Wheat (triticum turgidum l. var. durum) genotypes at injibara, northwestern Ethiopia.
Lal C, Hariprasanna K, Chikani BM, Gor HK (2014) Inter-allelic interactions in the inheritance of physical-quality traits in peanut ('Arachis hypogaea'L.). Australian Journal of Crop Science 8 (7)
Luo, H., Ren, X., Li, Z., Xu, Z., Li, X., Huang, L., Zhou, X., Chen, Y., Chen, W., Lei, Y., Liao, B., Pandey, M. K., Varshney, R. K., Guo, B., Jiang, X., Liu, F., & Jiang, H. (2017). Co-localization of major quantitative trait loci for pod size and weight to a 3.7 cM interval on chromosome A05 in cultivated peanut (Arachis hypogaea L.). BMC Genomics, 18(1), 58. https://doi.org/10.1186/S12864-016-3456-X DOI: https://doi.org/10.1186/s12864-016-3456-x
Malik MFA, Ashraf M, Qureshi AS, Khan MR (2011) Investigation and comparison of some morphological traits of the soybean populations using cluster analysis. Pakistan Journal of Botany 43 (2):1249-1255
Mather K, Jinks JL (1971) Biometrical genetics. The study of continuous variation. DOI: https://doi.org/10.1007/978-1-4899-3404-8
Melesse MB, Miriti P, Muricho G, Ojiewo CO, Afari-Sefa V (2023) Adoption and impact of improved groundnut varieties on household food security in Nigeria. J Agric Food Res 14:100817-100817. https://doi.org/10.1016/j.jafr.2023.100817 DOI: https://doi.org/10.1016/j.jafr.2023.100817
Morgun A, Leonova K, Morgun V, Liubych V, Kovalenko A (2022) Heterosis level and dominance degree of economic characters in F1 tobacco hybrids. Visnyk agrarnoi nauky 100 (12):28-33. https://doi.org/10.31073/agrovisnyk202212-04 DOI: https://doi.org/10.31073/agrovisnyk202212-04
Nigam SN, Rao MJV, Gibbons RW (1990) Artificial hybridization in groundnut. International Crops Research Institute for the Semi-Arid Tropics.
Prasanna GSS, Parveen SS, Muraleedharan A, Joshi JL (2024) Heterosis Analysis for Yield and Resistance to Yellow Stem Borer (Scirpophaga incertulas Wlk.) in F1 Progenies Derived from Six Crosses of Rice (Oryza sativa L.). Environment and Ecology 42 (3B):1431-1439. https://doi.org/10.60151/envec/ixwt5575 DOI: https://doi.org/10.60151/envec/IXWT5575
Robinson HF, Comstock RE, Harvey PH (1949) Estimates of Heritability and the Degree of Dominance in Corn1. Agronomy Journal 41 (8):353-359. https://doi.org/10.2134/agronj1949.00021962004100080005x DOI: https://doi.org/10.2134/agronj1949.00021962004100080005x
Roka P, Shrestha S, Adhikari SP, Neupane A, Shreepaili B, Bista MK (2024) A review on genetic parameters estimation, trait association, and multivariate analysis for crop improvement. Archives of Agriculture and Environmental Science 9 (3):618-625. https://doi.org/10.26832/24566632.2024.0903029 DOI: https://doi.org/10.26832/24566632.2024.0903029
Shamuyarira KW, Shimelis HA, Mathew I, Tsilo TJ (2019) Correlation and path coefficient analyses of yield and yield components in drought-tolerant bread wheat populations. South African Journal of Plant and Soil 36 (5):367-374. https://doi.org/10.1080/02571862.2019.1626500 DOI: https://doi.org/10.1080/02571862.2019.1626500
Sheidu A, Igyuve TM, Ochigbo AE (2021) Estimates of Heritability and Genetic Advance for Yield Components of Cowpea (Vigna unguiculata L. Walp) under Drought Stress Conditions. BADEGGI JOURNAL OF AGRICULTURAL RESEARCH AND ENVIRONMENT 3 (3):10-17. https://doi.org/10.35849/bjare202102012 DOI: https://doi.org/10.35849/BJARE202102012
Sheidu A, Shammah AM, Jibrin IM (2023) GENETIC VARIABILITY, HERITABILITY AND GENETIC ADVANCE OF IMPROVED COWPEA GENOTYPES (Vigna unguiculata L.). FUDMA JOURNAL OF SCIENCES 7 (3):297-301. https://doi.org/10.33003/fjs-2023-0703-1881 DOI: https://doi.org/10.33003/fjs-2023-0703-1881
Sheidu A, Vange T, Ochigbo AE (2020) Genetic Study of Early Maturity in Cowpea. Nigerian Journal of Genetics 34 (1):107-117
Singh RK, Chaudhary BD (1981) Biometrical methods in quantitative genetic analysis.
Statistical Annex (2019). OECD-FAO Agricultural Outlook. OECD. https://doi.org/10.1787/93034453-en DOI: https://doi.org/10.1787/93034453-en
Sun Z, Qi F, Liu H, Qin L, Xu J, Shi L, Zhang Z, Miao L, Huang B, Dong W, Wang X, Tian M, Feng J, Zhao R, Zheng Z, Zhang X (2022) QTL mapping of quality traits in peanut using whole-genome resequencing. The Crop Journal 10 (1):177-184. https://doi.org/10.1016/j.cj.2021.04.008 DOI: https://doi.org/10.1016/j.cj.2021.04.008
Upadhyaya HD, Gopal K, Nadaf HL, Vijayakumar S (1992) Combining ability studies for yield and its components in groundnut. Indian Journal of Genetic 52:1-6
Venuprasad R, Aruna R, Nigam SN (2011) Inheritance of traits associated with seed size in groundnut (Arachis hypogaea L.). Euphytica 181 (2):169-177. https://doi.org/10.1007/s10681-011-0390-5 DOI: https://doi.org/10.1007/s10681-011-0390-5
Votapwa IO, Abdullaziz F.B., Sheidu A., T. M, Ahmad Y.A., Ismail S.N., Jibrin I.M., Tanimu S.A., U.I. A (2024) Evaluation of Resistance to A.flavus infestation on 50 peanut (Arachis hypogaea L.) in Northern Nigerias Semi Arid regions. In: Plant Breeders Association of Nigeria, Owerri, Nigeria, November 6-8 2024a. vol 2. pp 106-117
Votapwa IO, Abdullaziz F.B., Sheidu A., T. M, Ahmad Y.A., Ismail S.N., Jibrin I.M., Tanimu S.A., U.I. A (2024) Genetic Improvement of Peanut (Arachis hypogaea L.) for Bacterial Wilt Resistance: Screening and Breeding Strategies in Nigerian Cultivars. In: Plant Breeders Association of Nigeria, Centre for entrepreneurial studies federal university of technology owerri, November, 6-8 2024b. vol 2. pp 118-127
Copyright (c) 2025 FUDMA JOURNAL OF SCIENCES

This work is licensed under a Creative Commons Attribution 4.0 International License.
FUDMA Journal of Sciences