ISOLATION, CHARACTERIZATION AND EVALUATION OF ANTIOXIDANT ACTIVITY OF SILICA CELLULOSE NANOCOMPOSITE (SiO2-CNC) EXTRACTED FROM BIO-WASTE (RICE HUSK) INTEGRATED WITH CALLISTEMON CITRINUS EXTRACT

  • Amanabo Monday Adegbe Department of Pure and Industrial Chemistry, Kogi State University, Kogi State, Anyigba, Nigeria
  • Rotimi Abisoye Larayetan Kogi State University, Anyigba, Kogi State, Nigeria.
  • Kingsley Makoji Omatola Department of Physics, Kogi State University, Kogi State, Anyigba, Nigeria
  • Ceaser William Onoja Department of Pure and Industrial Chemistry, Kogi State University, Kogi State, Anyigba, Nigeria
  • Sunday Abah Department of Pure and Industrial Chemistry, Kogi State University, Kogi State, Anyigba, Nigeria
  • Abu Arome Department of Pure and Industrial Chemistry, Kogi State University, Kogi State, Anyigba, Nigeria
  • Daniel Hassan Abalaka School of Applied Sciences, Department of Science Laboratory Technology, Kogi State Polytechnic Lokoja, Kogi, Nigeria
  • Oluranti Olagoke Ogunmola Chemistry Unit, Department of Physical Sciences Education, Emmanuel Alayande University of Education, P.M.B 1010
Keywords: Rice-husks, Silica cellulose nanocomposite (SiO2-CNC), EDX, SEM, TEM, FTIR

Abstract

Recent research has focused on more complex uses, such as the extraction of silica cellulose nanocomposite from rice husks, which has potential as a way to create high-tech materials. The work describes the successful isolation, characterization, and assessment of rice husk-derived silica cellulose nanocomposite (SiO2-CNC) with Callistemon citrinus extract integration. The synthesis process consisted of three principal operations: delignification with alkaline treatment, sodium hypochlorite bleaching, and concentrated sulphuric acid hydrolysis. The prepared nanocomposite was analyzed by EDX, SEM, TEM, FTIR, spectrophotometry, and thermal analysis (DTA/TGA). EDX studies showed a composite material with elemental silica (40.20%), carbon (20.76%), silver (10.57%), and zinc (8.50%) in significant proportions. The sophisticated material structure with uniform porous networks was demonstrated by SEM analysis, while the presence of nanoparticles sized from 2.70 to 6.37 nm was confirmed by TEM. Thermal analysis showed distinct decomposition steps beyond 250oC, and material stability was observed up to these temperatures. FTIR spectroscopy verified the functional groups in SiO2-CNC and the rice husk extract, while UV analysis showed strong absorption in the 200-230 nm range. Callistemon citrinus extract showed the ability to enhance the antioxidant properties of SiO2-CNC, which was observable in DPPH and ABTS assays. The integrated composite showed significant DPPH and ABTS radical scavenging activities. These findings demonstrate the successful conversion of agricultural waste into a value-added nanocomposite with enhanced functional properties, offering potential application in antioxidant delivery systems, and advanced materials development. This research contributes to sustainable nanomaterial development while addressing agricultural waste management challenges.

References

Agnello, S., Alessi, A., Buscarino, G., Piazza, A., Maio, A., Botta, L., & Scaffaro, R. (2017). Structural and thermal stability of graphene oxide-silica nanoparticles nanocomposites. Journal of Alloys and Compounds, 695, 2054-2064. DOI: https://doi.org/10.1016/j.jallcom.2016.11.044

Ahmed, H. U., Mohammed, A. A., & Mohammed, A. S. (2023). Effectiveness of silicon dioxide nanoparticles (Nano SiO2) on the internal structures, electrical conductivity, and elevated temperature behaviors of geopolymer concrete composites. Journal of Inorganic and Organometallic Polymers and Materials, 33(12), 3894-3914. DOI: https://doi.org/10.1007/s10904-023-02672-2

Ahmed, M. (2019). Phenotypic and molecular identification of blast resistance genes in rice germplasm (Doctoral dissertation, MS Thesis, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh).

Algar, W. R., Massey, M., Rees, K., Higgins, R., Krause, K. D., Darwish, G. H., ... & Kim, H. (2021). Photoluminescent nanoparticles for chemical and biological analysis and imaging. Chemical Reviews, 121(15), 9243-9358. DOI: https://doi.org/10.1021/acs.chemrev.0c01176

Anlovar, A., & agar, E. (2022). Cellulose structures as a support or template for inorganic nanostructures and their assemblies. Nanomaterials, 12(11), 1837. DOI: https://doi.org/10.3390/nano12111837

Ates, B., Koytepe, S., Ulu, A., Gurses, C., & Thakur, V. K. (2020). Chemistry, structures, and advanced applications of nanocomposites from biorenewable resources. Chemical Reviews, 120(17), 9304-9362. DOI: https://doi.org/10.1021/acs.chemrev.9b00553

Bakare, W. A. (2021). Inter-Varietal Variation in Elemental Uptake by Rice and its Implications for Public Health: A Case Study of Dareta Village Zamfara State Nigeria. University of Salford (United Kingdom).

Balaji, D., Kumar, P. S., Bhuvaneshwari, V., Rajeshkumar, L., Singh, M. K., Sanjay, M. R., & Siengchin, S. (2024). A review on effect of nanoparticle addition on thermal behavior of natural fiberreinforced composites. Heliyon. DOI: https://doi.org/10.1016/j.heliyon.2024.e41192

Cheung, C. (2018). Fabrication of a porous anode with continuous linear pores by using unidirectional carbon fibers as sacrificial templates to improve the performance of solid oxide fuel cell. University of California, San Diego.

Corobea, M. C., Muhulet, O., Miculescu, F., Antoniac, I. V., Vuluga, Z., Florea, D., ... & Thakur, V. K. (2016). Novel nanocomposite membranes from cellulose acetate and claysilica nanowires. Polymers for Advanced Technologies, 27(12), 1586-1595. DOI: https://doi.org/10.1002/pat.3835

Dairi, N., Ferfera-Harrar, H., Ramos, M., & Garrigs, M. C. (2019). Cellulose acetate/AgNPs-organoclay and/or thymol nano-biocomposite films with combined antimicrobial/antioxidant properties for active food packaging use. International Journal of Biological Macromolecules, 121, 508-523. DOI: https://doi.org/10.1016/j.ijbiomac.2018.10.042

Dhatarwal, P., Choudhary, S., & Sengwa, R. J. (2021). Dielectric and optical properties of alumina and silica nanoparticles dispersed poly (methyl methacrylate) matrix-based nanocomposites for advanced polymer technologies. Journal of Polymer Research, 28(2), 63. DOI: https://doi.org/10.1007/s10965-020-02406-9

FLEMATTI, C. (2018). Strategies for selective fluorescent functionalization of cellulose-based nanomaterials used for water remediation.

Fu, J. He, C., Wang, S., & Chen, Y. (2018). A thermally stable and hydrophobic composite aerogel made from cellulose nanofibril aerogel impregnated with silica particles. Journal of Materials Science, 53, 7072-7082. DOI: https://doi.org/10.1007/s10853-018-2034-9

Ghosal, S., & Moulik, S. C. (2015). Use of rice husk ash as partial replacement with cement in concrete-A review. International Journal of Engineering Research, 4(9), 506-509. DOI: https://doi.org/10.17950/ijer/v4s9/907

Harito, C., Bavykin, D. V., Yuliarto, B., Dipojono, H. K., & Walsh, F. C. (2019). Polymer nanocomposites having a high filler content: synthesis, structures, properties, and applications. Nanoscale, 11(11), 4653-4682. DOI: https://doi.org/10.1039/C9NR00117D

Hernandez Perez, R., Olarte Paredes, A., Salgado Delgado, R., & Salgado Delgado, A. M. (2023). Rice husk Var.Morelos A-2010as an eco-friendly alternative for the waste management converting them cellulose and nanocellulose. International Journal of Environmental Analytical Chemistry, 103(19), 7571-7586.

Hernandez Perez, R., Olarte Paredes, A., Salgado Delgado, R., & Salgado Delgado, A. M. (2023). Rice husk Var.'Morelos A-2010'as an eco-friendly alternative for the waste management converting them cellulose and nanocellulose. International Journal of Environmental Analytical Chemistry, 103(19), 7571-7586. DOI: https://doi.org/10.1080/03067319.2021.1972991

Ismail, M. (2023). Advanced imaging of lignocellulosic and cellulose materials.

Janmohammadi, M., Nazemi, Z., Salehi, A. O. M., Seyfoori, A., John, J. V., Nourbakhsh, M. S., & Akbari, M. (2023). Cellulose-based composite scaffolds for bone tissue engineering and localized drug delivery. Bioactive Materials, 20, 137-163. DOI: https://doi.org/10.1016/j.bioactmat.2022.05.018

Jannah, M., Ahmad, A., Hayatun, A., Taba, P., & Chadijah, S. (2019). Effect of filler and plastisizer on the mechanical properties of bioplastic cellulose from rice husk. Journal of Physics: Conference Series, 1341(3), 032019. DOI: https://doi.org/10.1088/1742-6596/1341/3/032019

Khan, A., Rangappa, S. M., Siengchin, S., & Asiri, A. M. (Eds.). (2021). Biobased Composites: Processing, Characterization, Properties, and Applications. John Wiley & Sons. DOI: https://doi.org/10.1002/9781119641803

Kuan, C. Y., Yuen, K. H., & Liong, M. T. (2012). Physical, chemical and physicochemical characterization of rice husk. British Food Journal, 114(6), 853-867. DOI: https://doi.org/10.1108/00070701211234372

Kumar, S., Prasad, L., Bijlwan, P. P., & Yadav, A. (2024). Thermogravimetric analysis of lignocellulosic leaf-based fiber-reinforced thermosets polymer composites: an overview. Biomass Conversion and Biorefinery, 14(12), 12673-12698. DOI: https://doi.org/10.1007/s13399-022-03332-0

Larayetan, R. A., Okoh, O. O., Sadimenko, A., & Okoh, A. I. (2017). Terpene constituents of the aerial parts, phenolic content, antibacterial potential, free radical scavenging and antioxidant activity of Callistemon citrinus (Curtis) Skeels (Myrtaceae) from Eastern Cape Province of South Africa. BMC complementary and alternative medicine, 17, 1-9. DOI: https://doi.org/10.1186/s12906-017-1804-2

Larayetan, R., Ololade, Z. S., Ogunmola, O. O., & Ladokun, A. (2019). Phytochemical constituents, antioxidant, cytotoxicity, antimicrobial, antitrypanosomal, and antimalarial potentials of the crude extracts of Callistemon citrinus. EvidenceBased Complementary and Alternative Medicine, 2019(1), 5410923. DOI: https://doi.org/10.1155/2019/5410923

Larayetan, R. A., Ayeni, G., Yahaya, A., Ajayi, A., Omale, S., Ishaq, U., ... & Enyioma-Alozie, S. (2021). Chemical composition of Gossypium herbaceum linn and its antioxidant, antibacterial, cytotoxic and antimalarial activities. Clinical Complementary Medicine and Pharmacology, 1(1), 100008. DOI: https://doi.org/10.1016/j.ccmp.2021.100008

Larayetan, R., Friday, E. T., Oluranti, O., Owonikoko, Y., & Abdulrazaq, Y. (2024). Chemical Profile, Antitrypanosomal, Antiplasmodial and Antibacterial Activities of the Volatile Oil from the Seed of Callistemon Citrinus.

Li, Y., Liao, C., & Tjong, S. C. (2019). Synthetic biodegradable aliphatic polyester nanocomposites reinforced with nanohydroxyapatite and/or graphene oxide for bone tissue engineering applications. Nanomaterials, 9(4), 590. DOI: https://doi.org/10.3390/nano9040590

Lin, Z., Li, S., & Huang, J. (2021). Natural cellulose substance based energy materials. ChemistryAn Asian Journal, 16(5), 378-396. DOI: https://doi.org/10.1002/asia.202001358

Miraftab, R., Ramezanzadeh, B., Bahlakeh, G., & Mahdavian, M. (2017). An advanced approach for fabricating a reduced graphene oxide-AZO dye/polyurethane composite with enhanced ultraviolet (UV) shielding properties: Experimental and first-principles QM modeling. Chemical Engineering Journal, 321, 159-174. DOI: https://doi.org/10.1016/j.cej.2017.03.124

Mohite, S. S., & Chavan, S. S. (2024). Synthesis and conjugation properties of alkynyl functionalized salicylidene Ni (II) and Zn (II) phosphine complexes and their use as a precursor for preparation of NiO and ZnO nanoparticles. Inorganic and Nano-Metal Chemistry, 54(11), 1085-1096. DOI: https://doi.org/10.1080/24701556.2023.2165682

Moon, R. J., Martini, A., Nairn, J., Simonsen, J., & Youngblood, J. (2011). Cellulose nanomaterials review: structure, properties and nanocomposites. Chemical Society Reviews, 40(7), 3941-3994. DOI: https://doi.org/10.1039/c0cs00108b

Muthayya, S., Sugimoto, J. D., Montgomery, S, & Maberly, G, F. (2014). Academy of Science, 1324(1), 7-14. DOI: https://doi.org/10.1111/nyas.12540

Nguyen, N. T., et al. (2022). The extraction of lignocelluloses and silica from rice husk using a single biorefinery process and their characteristics. Journal of Industrial and Engineering Chemistry, 108, 150-158. DOI: https://doi.org/10.1016/j.jiec.2021.12.032

Njuguna, J., Ansari, F., Sachse, S., Rodriguez, V. M., Siqqique, S., & Zhu, H. (2021). Nanomaterials, nanofillers, and nanocomposites: types and properties. In Health and environmental safety of nanomaterials (pp. 3-37). Woodhead Publishing. DOI: https://doi.org/10.1016/B978-0-12-820505-1.00011-0

Norizan, M. N., Shazleen, S. S., Alias, A. H., Sabaruddin, F. A., Asyraf, M. R. M., Zainudin, E. S., ... & Norrrahim, M. N. F. (2022). Nanocellulose-based nanocomposites for sustainable applications: A review. Nanomaterials, 12(19), 3483. DOI: https://doi.org/10.3390/nano12193483

Nurazzi, N., Asyraf, M. R. M., Rayung, M., Norrrahim, M. N. F., Shazleen, S. S., Rani, M. S. A., ... & Abdan, K. (2021). Thermogravimetric analysis properties of cellulosic natural fiber polymer composites: A review on influence of chemical treatments. Polymers, 13(16), 2710. DOI: https://doi.org/10.3390/polym13162710

Ogundare, S. A., & van Zyl, W. E. (2019). Amplification of SERS "hot spots" by silica clustering in a silver-nanoparticle/nanocrystalline-cellulose sensor applied in malachite green detection. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 570, 156-164. DOI: https://doi.org/10.1016/j.colsurfa.2019.03.019

Oyejobi, D. O., Firoozi, A. A., Fernandez, D. B., & Avudaiappan, S. (2024). Integrating circular economy principles into concrete technology: Enhancing sustainability through industrial waste utilization. Results in Engineering, 102846. DOI: https://doi.org/10.1016/j.rineng.2024.102846

Ovais, M., Khalil, A. T., Islam, N. U., Ahmad, I., Ayaz, M., Saravanan, M., ... & Mukherjee, S. (2018). Role of plant phytochemicals and microbial enzymes in biosynthesis of metallic nanoparticles. Applied microbiology and biotechnology, 102, 6799-6814. DOI: https://doi.org/10.1007/s00253-018-9146-7

Patel, V. K., Singh, V. K., & Jendre, A. (2023). Role of secondary nutrient "sulphur" in oilseed crops. Int Year Millets, 2023, 27.

Phiri, R., Rangappa, S. M., Siengchin, S., Oladijo, O. P., & Dhakal, H. N. (2023). Development of sustainable biopolymer-based composites for lightweight applications from agricultural waste biomass: A review. Advanced Industrial and Engineering Polymer Research. DOI: https://doi.org/10.1016/j.aiepr.2023.04.004

Phong, D. T., Tu, P. M., Dat, N. M., Nam, N. T. H., Cong, C. Q., Hai, N. D., ... & Hieu, N. H. (2024). Corn Stalk-Derived Cellulose Aerogel/Poly (vinyl alcohol): Impact of Hydrophobic Modifications on the Adsorption Activity and Assessment of Thermal Insulation Perspective. Waste and Biomass Valorization, 15(12), 6959-6975. DOI: https://doi.org/10.1007/s12649-024-02624-y

Piyathissa, S. D. S., et al. (2023). Introducing a Novel Rice Husk Combustion Technology for Maximizing Energy and Amorphous Silica Production Using a Prototype Hybrid Rice Husk Burner to Minimize Environmental Impacts and Health Risk. Energies, 16(3), 1120. DOI: https://doi.org/10.3390/en16031120

Prema, P., Veeramanikandan, V., Rameshkumar, K., Gatasheh, M. K., Hatamleh, A. A., Balasubramani, R., & Balaji, P. (2022). Statistical optimization of silver nanoparticle synthesis by green tea extract and its efficacy on colorimetric detection of mercury from industrial waste water. Environmental Research, 204, 111915. DOI: https://doi.org/10.1016/j.envres.2021.111915

Rehman, H. U., Aziz, T., Farooq, M., Wakel, A., & Rengel, Z. (2012). Zinc nutrition in rice production systems: a review. Plant and soil, 361, 203-226. DOI: https://doi.org/10.1007/s11104-012-1346-9

Reidy, B., Haase, A., Luch, A., Dawson, K. A., & Lynch, I. (2013). Mechanisms of silver nanoparticle release, transformation and toxicity: a critical review of current knowledge and recommendations for future studies and applications. Materials, 6(6), 2295-2350. DOI: https://doi.org/10.3390/ma6062295

Requena, R., et al. (2019). Integral fractionation of rice husks into bioactive arabinoxylans, cellulose nanocrystals, and silica particles. ACS Sustainable Chemistry & Engineering, 7(6), 6275-6286. DOI: https://doi.org/10.1021/acssuschemeng.8b06692

Ruiz-Palomero, C., Soriano, M. L., & Valcrcel, M. (2017). Nanocellulose as analyte and analytical tool: Opportunities and challenges. TrAC Trends in Analytical Chemistry, 87, 1-18. DOI: https://doi.org/10.1016/j.trac.2016.11.007

Salh, R. (2011). Defect related luminescence in silicon dioxide network: a review. Crystalline Silicon-Properties and Uses, 135, 172. DOI: https://doi.org/10.5772/22607

Salihu Makanta, A. (2021). Profiling of Selected Nigerian Local Rice Varieties for their Essential Trace Elements Content. School Of Physical Sciences Biennial International Conference (SPSBIC).

Shen, Y., Zhao, P., & Shao, Q. (2014). Porous silica and carbon derived materials from rice husk pyrolysis char. Microporous and Mesoporous Materials, 188, 46-76. DOI: https://doi.org/10.1016/j.micromeso.2014.01.005

Teo, H. L., & Wahab, R. A. (2020). Towards an eco-friendly deconstruction of agro-industrial biomass and preparation of renewable cellulose nanomaterials: A review. International Journal of Biological Macromolecules, 161, 1414-1430. DOI: https://doi.org/10.1016/j.ijbiomac.2020.08.076

Waleed, H., Hudaib, B., Al-Harahsheh, M., & Allawzi, M. (2025). Synthesis and Characterization of a Modified Silica/Cellulose Acetate Nanocomposite Ultrafiltration Membrane for Phenol Removal from Wastewater. Separation and Purification Technology, 353, 128391. DOI: https://doi.org/10.1016/j.seppur.2024.128391

Zhang, Y., Li, J., Gao, Y., Wu, F., Hong, Y., Shen, L., & Lin, X. (2022). Improvements on multiple direct compaction properties of three powders prepared from Puerariae Lobatae Radix using surface and texture modification: Comparison of microcrystalline cellulose and two nano-silicas. International Journal of Pharmaceutics, 622, 121837. DOI: https://doi.org/10.1016/j.ijpharm.2022.121837

Zhang, C., Chao, L., Zhang, Z., Zhang, L., Li, Q., Fan, H., ... & Hu, X. (2021). Pyrolysis of cellulose: Evolution of functionalities and structure of bio-char versus temperature. Renewable and Sustainable Energy Reviews, 135, 110416. DOI: https://doi.org/10.1016/j.rser.2020.110416

Mutailipu, M., Li, J., & Pan, S. (2024). Looking Back the Nonlinear Optical Crystals in a Functionalized Unit's Perspective. Advanced Functional Materials, 2419204. DOI: https://doi.org/10.1002/adfm.202419204

Published
2025-02-28
How to Cite
Adegbe, A. M., Larayetan, R. A., Omatola, K. M., Onoja, C. W., Abah, S., Arome, A., Abalaka, D. H., & Ogunmola, O. O. (2025). ISOLATION, CHARACTERIZATION AND EVALUATION OF ANTIOXIDANT ACTIVITY OF SILICA CELLULOSE NANOCOMPOSITE (SiO2-CNC) EXTRACTED FROM BIO-WASTE (RICE HUSK) INTEGRATED WITH CALLISTEMON CITRINUS EXTRACT. FUDMA JOURNAL OF SCIENCES, 9(2), 220 - 230. https://doi.org/10.33003/fjs-2025-0902-3176