ISOLATION, CHARACTERIZATION AND EVALUATION OF ANTIOXIDANT ACTIVITY OF SILICA CELLULOSE NANOCOMPOSITE (SiO2-CNC) EXTRACTED FROM BIO-WASTE (RICE HUSK) INTEGRATED WITH CALLISTEMON CITRINUS EXTRACT
Abstract
Recent research has focused on more complex uses, such as the extraction of silica cellulose nanocomposite from rice husks, which has potential as a way to create high-tech materials. The work describes the successful isolation, characterization, and assessment of rice husk-derived silica cellulose nanocomposite (SiO2-CNC) with Callistemon citrinus extract integration. The synthesis process consisted of three principal operations: delignification with alkaline treatment, sodium hypochlorite bleaching, and concentrated sulphuric acid hydrolysis. The prepared nanocomposite was analyzed by EDX, SEM, TEM, FTIR, spectrophotometry, and thermal analysis (DTA/TGA). EDX studies showed a composite material with elemental silica (40.20%), carbon (20.76%), silver (10.57%), and zinc (8.50%) in significant proportions. The sophisticated material structure with uniform porous networks was demonstrated by SEM analysis, while the presence of nanoparticles sized from 2.70 to 6.37 nm was confirmed by TEM. Thermal analysis showed distinct decomposition steps beyond 250oC, and material stability was observed up to these temperatures. FTIR spectroscopy verified the functional groups in SiO2-CNC and the rice husk extract, while UV analysis showed strong absorption in the 200-230 nm range. Callistemon citrinus extract showed the ability to enhance the antioxidant properties of SiO2-CNC, which was observable in DPPH and ABTS assays. The integrated composite showed significant DPPH and ABTS radical scavenging activities. These findings demonstrate the successful conversion of agricultural waste into a value-added nanocomposite with enhanced functional properties, offering potential application in antioxidant delivery systems, and advanced materials development. This research contributes to sustainable nanomaterial development while addressing agricultural waste management challenges.
References
Agnello, S., Alessi, A., Buscarino, G., Piazza, A., Maio, A., Botta, L., & Scaffaro, R. (2017). Structural and thermal stability of graphene oxide-silica nanoparticles nanocomposites. Journal of Alloys and Compounds, 695, 2054-2064.
Ahmed, H. U., Mohammed, A. A., & Mohammed, A. S. (2023). Effectiveness of silicon dioxide nanoparticles (Nano SiO2) on the internal structures, electrical conductivity, and elevated temperature behaviors of geopolymer concrete composites. Journal of Inorganic and Organometallic Polymers and Materials, 33(12), 3894-3914.
Ahmed, M. (2019). Phenotypic and molecular identification of blast resistance genes in rice germplasm (Doctoral dissertation, MS Thesis, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh).
Algar, W. R., Massey, M., Rees, K., Higgins, R., Krause, K. D., Darwish, G. H., ... & Kim, H. (2021). Photoluminescent nanoparticles for chemical and biological analysis and imaging. Chemical Reviews, 121(15), 9243-9358.
Anlovar, A., & agar, E. (2022). Cellulose structures as a support or template for inorganic nanostructures and their assemblies. Nanomaterials, 12(11), 1837.
Ates, B., Koytepe, S., Ulu, A., Gurses, C., & Thakur, V. K. (2020). Chemistry, structures, and advanced applications of nanocomposites from biorenewable resources. Chemical Reviews, 120(17), 9304-9362.
Bakare, W. A. (2021). Inter-Varietal Variation in Elemental Uptake by Rice and its Implications for Public Health: A Case Study of Dareta Village Zamfara State Nigeria. University of Salford (United Kingdom).
Balaji, D., Kumar, P. S., Bhuvaneshwari, V., Rajeshkumar, L., Singh, M. K., Sanjay, M. R., & Siengchin, S. (2024). A review on effect of nanoparticle addition on thermal behavior of natural fiberreinforced composites. Heliyon.
Cheung, C. (2018). Fabrication of a porous anode with continuous linear pores by using unidirectional carbon fibers as sacrificial templates to improve the performance of solid oxide fuel cell. University of California, San Diego.
Corobea, M. C., Muhulet, O., Miculescu, F., Antoniac, I. V., Vuluga, Z., Florea, D., ... & Thakur, V. K. (2016). Novel nanocomposite membranes from cellulose acetate and claysilica nanowires. Polymers for Advanced Technologies, 27(12), 1586-1595.
Dairi, N., Ferfera-Harrar, H., Ramos, M., & Garrigs, M. C. (2019). Cellulose acetate/AgNPs-organoclay and/or thymol nano-biocomposite films with combined antimicrobial/antioxidant properties for active food packaging use. International Journal of Biological Macromolecules, 121, 508-523.
Dhatarwal, P., Choudhary, S., & Sengwa, R. J. (2021). Dielectric and optical properties of alumina and silica nanoparticles dispersed poly (methyl methacrylate) matrix-based nanocomposites for advanced polymer technologies. Journal of Polymer Research, 28(2), 63.
FLEMATTI, C. (2018). Strategies for selective fluorescent functionalization of cellulose-based nanomaterials used for water remediation.
Fu, J. He, C., Wang, S., & Chen, Y. (2018). A thermally stable and hydrophobic composite aerogel made from cellulose nanofibril aerogel impregnated with silica particles. Journal of Materials Science, 53, 7072-7082.
Ghosal, S., & Moulik, S. C. (2015). Use of rice husk ash as partial replacement with cement in concrete-A review. International Journal of Engineering Research, 4(9), 506-509.
Harito, C., Bavykin, D. V., Yuliarto, B., Dipojono, H. K., & Walsh, F. C. (2019). Polymer nanocomposites having a high filler content: synthesis, structures, properties, and applications. Nanoscale, 11(11), 4653-4682.
Hernandez Perez, R., Olarte Paredes, A., Salgado Delgado, R., & Salgado Delgado, A. M. (2023). Rice husk Var.Morelos A-2010as an eco-friendly alternative for the waste management converting them cellulose and nanocellulose. International Journal of Environmental Analytical Chemistry, 103(19), 7571-7586.
Hernandez Perez, R., Olarte Paredes, A., Salgado Delgado, R., & Salgado Delgado, A. M. (2023). Rice husk Var.'Morelos A-2010'as an eco-friendly alternative for the waste management converting them cellulose and nanocellulose. International Journal of Environmental Analytical Chemistry, 103(19), 7571-7586.
Ismail, M. (2023). Advanced imaging of lignocellulosic and cellulose materials.
Janmohammadi, M., Nazemi, Z., Salehi, A. O. M., Seyfoori, A., John, J. V., Nourbakhsh, M. S., & Akbari, M. (2023). Cellulose-based composite scaffolds for bone tissue engineering and localized drug delivery. Bioactive Materials, 20, 137-163.
Jannah, M., Ahmad, A., Hayatun, A., Taba, P., & Chadijah, S. (2019). Effect of filler and plastisizer on the mechanical properties of bioplastic cellulose from rice husk. Journal of Physics: Conference Series, 1341(3), 032019.
Khan, A., Rangappa, S. M., Siengchin, S., & Asiri, A. M. (Eds.). (2021). Biobased Composites: Processing, Characterization, Properties, and Applications. John Wiley & Sons.
Kuan, C. Y., Yuen, K. H., & Liong, M. T. (2012). Physical, chemical and physicochemical characterization of rice husk. British Food Journal, 114(6), 853-867.
Kumar, S., Prasad, L., Bijlwan, P. P., & Yadav, A. (2024). Thermogravimetric analysis of lignocellulosic leaf-based fiber-reinforced thermosets polymer composites: an overview. Biomass Conversion and Biorefinery, 14(12), 12673-12698.
Larayetan, R. A., Okoh, O. O., Sadimenko, A., & Okoh, A. I. (2017). Terpene constituents of the aerial parts, phenolic content, antibacterial potential, free radical scavenging and antioxidant activity of Callistemon citrinus (Curtis) Skeels (Myrtaceae) from Eastern Cape Province of South Africa. BMC complementary and alternative medicine, 17, 1-9.
Larayetan, R., Ololade, Z. S., Ogunmola, O. O., & Ladokun, A. (2019). Phytochemical constituents, antioxidant, cytotoxicity, antimicrobial, antitrypanosomal, and antimalarial potentials of the crude extracts of Callistemon citrinus. EvidenceBased Complementary and Alternative Medicine, 2019(1), 5410923.
Larayetan, R. A., Ayeni, G., Yahaya, A., Ajayi, A., Omale, S., Ishaq, U., ... & Enyioma-Alozie, S. (2021). Chemical composition of Gossypium herbaceum linn and its antioxidant, antibacterial, cytotoxic and antimalarial activities. Clinical Complementary Medicine and Pharmacology, 1(1), 100008.
Larayetan, R., Friday, E. T., Oluranti, O., Owonikoko, Y., & Abdulrazaq, Y. (2024). Chemical Profile, Antitrypanosomal, Antiplasmodial and Antibacterial Activities of the Volatile Oil from the Seed of Callistemon Citrinus.
Li, Y., Liao, C., & Tjong, S. C. (2019). Synthetic biodegradable aliphatic polyester nanocomposites reinforced with nanohydroxyapatite and/or graphene oxide for bone tissue engineering applications. Nanomaterials, 9(4), 590.
Lin, Z., Li, S., & Huang, J. (2021). Natural cellulose substance based energy materials. ChemistryAn Asian Journal, 16(5), 378-396.
Miraftab, R., Ramezanzadeh, B., Bahlakeh, G., & Mahdavian, M. (2017). An advanced approach for fabricating a reduced graphene oxide-AZO dye/polyurethane composite with enhanced ultraviolet (UV) shielding properties: Experimental and first-principles QM modeling. Chemical Engineering Journal, 321, 159-174.
Mohite, S. S., & Chavan, S. S. (2024). Synthesis and conjugation properties of alkynyl functionalized salicylidene Ni (II) and Zn (II) phosphine complexes and their use as a precursor for preparation of NiO and ZnO nanoparticles. Inorganic and Nano-Metal Chemistry, 54(11), 1085-1096.
Moon, R. J., Martini, A., Nairn, J., Simonsen, J., & Youngblood, J. (2011). Cellulose nanomaterials review: structure, properties and nanocomposites. Chemical Society Reviews, 40(7), 3941-3994.
Muthayya, S., Sugimoto, J. D., Montgomery, S, & Maberly, G, F. (2014). Academy of Science, 1324(1), 7-14.
Nguyen, N. T., et al. (2022). The extraction of lignocelluloses and silica from rice husk using a single biorefinery process and their characteristics. Journal of Industrial and Engineering Chemistry, 108, 150-158.
Njuguna, J., Ansari, F., Sachse, S., Rodriguez, V. M., Siqqique, S., & Zhu, H. (2021). Nanomaterials, nanofillers, and nanocomposites: types and properties. In Health and environmental safety of nanomaterials (pp. 3-37). Woodhead Publishing.
Norizan, M. N., Shazleen, S. S., Alias, A. H., Sabaruddin, F. A., Asyraf, M. R. M., Zainudin, E. S., ... & Norrrahim, M. N. F. (2022). Nanocellulose-based nanocomposites for sustainable applications: A review. Nanomaterials, 12(19), 3483.
Nurazzi, N., Asyraf, M. R. M., Rayung, M., Norrrahim, M. N. F., Shazleen, S. S., Rani, M. S. A., ... & Abdan, K. (2021). Thermogravimetric analysis properties of cellulosic natural fiber polymer composites: A review on influence of chemical treatments. Polymers, 13(16), 2710.
Ogundare, S. A., & van Zyl, W. E. (2019). Amplification of SERS "hot spots" by silica clustering in a silver-nanoparticle/nanocrystalline-cellulose sensor applied in malachite green detection. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 570, 156-164.
Oyejobi, D. O., Firoozi, A. A., Fernandez, D. B., & Avudaiappan, S. (2024). Integrating circular economy principles into concrete technology: Enhancing sustainability through industrial waste utilization. Results in Engineering, 102846.
Ovais, M., Khalil, A. T., Islam, N. U., Ahmad, I., Ayaz, M., Saravanan, M., ... & Mukherjee, S. (2018). Role of plant phytochemicals and microbial enzymes in biosynthesis of metallic nanoparticles. Applied microbiology and biotechnology, 102, 6799-6814.
Patel, V. K., Singh, V. K., & Jendre, A. (2023). Role of secondary nutrient "sulphur" in oilseed crops. Int Year Millets, 2023, 27.
Phiri, R., Rangappa, S. M., Siengchin, S., Oladijo, O. P., & Dhakal, H. N. (2023). Development of sustainable biopolymer-based composites for lightweight applications from agricultural waste biomass: A review. Advanced Industrial and Engineering Polymer Research.
Phong, D. T., Tu, P. M., Dat, N. M., Nam, N. T. H., Cong, C. Q., Hai, N. D., ... & Hieu, N. H. (2024). Corn Stalk-Derived Cellulose Aerogel/Poly (vinyl alcohol): Impact of Hydrophobic Modifications on the Adsorption Activity and Assessment of Thermal Insulation Perspective. Waste and Biomass Valorization, 15(12), 6959-6975.
Piyathissa, S. D. S., et al. (2023). Introducing a Novel Rice Husk Combustion Technology for Maximizing Energy and Amorphous Silica Production Using a Prototype Hybrid Rice Husk Burner to Minimize Environmental Impacts and Health Risk. Energies, 16(3), 1120.
Prema, P., Veeramanikandan, V., Rameshkumar, K., Gatasheh, M. K., Hatamleh, A. A., Balasubramani, R., & Balaji, P. (2022). Statistical optimization of silver nanoparticle synthesis by green tea extract and its efficacy on colorimetric detection of mercury from industrial waste water. Environmental Research, 204, 111915.
Rehman, H. U., Aziz, T., Farooq, M., Wakel, A., & Rengel, Z. (2012). Zinc nutrition in rice production systems: a review. Plant and soil, 361, 203-226.
Reidy, B., Haase, A., Luch, A., Dawson, K. A., & Lynch, I. (2013). Mechanisms of silver nanoparticle release, transformation and toxicity: a critical review of current knowledge and recommendations for future studies and applications. Materials, 6(6), 2295-2350.
Requena, R., et al. (2019). Integral fractionation of rice husks into bioactive arabinoxylans, cellulose nanocrystals, and silica particles. ACS Sustainable Chemistry & Engineering, 7(6), 6275-6286.
Ruiz-Palomero, C., Soriano, M. L., & Valcrcel, M. (2017). Nanocellulose as analyte and analytical tool: Opportunities and challenges. TrAC Trends in Analytical Chemistry, 87, 1-18.
Salh, R. (2011). Defect related luminescence in silicon dioxide network: a review. Crystalline Silicon-Properties and Uses, 135, 172.
Salihu Makanta, A. (2021). Profiling of Selected Nigerian Local Rice Varieties for their Essential Trace Elements Content. School Of Physical Sciences Biennial International Conference (SPSBIC).
Shen, Y., Zhao, P., & Shao, Q. (2014). Porous silica and carbon derived materials from rice husk pyrolysis char. Microporous and Mesoporous Materials, 188, 46-76.
Teo, H. L., & Wahab, R. A. (2020). Towards an eco-friendly deconstruction of agro-industrial biomass and preparation of renewable cellulose nanomaterials: A review. International Journal of Biological Macromolecules, 161, 1414-1430.
Waleed, H., Hudaib, B., Al-Harahsheh, M., & Allawzi, M. (2025). Synthesis and Characterization of a Modified Silica/Cellulose Acetate Nanocomposite Ultrafiltration Membrane for Phenol Removal from Wastewater. Separation and Purification Technology, 353, 128391.
Zhang, Y., Li, J., Gao, Y., Wu, F., Hong, Y., Shen, L., & Lin, X. (2022). Improvements on multiple direct compaction properties of three powders prepared from Puerariae Lobatae Radix using surface and texture modification: Comparison of microcrystalline cellulose and two nano-silicas. International Journal of Pharmaceutics, 622, 121837.
Zhang, C., Chao, L., Zhang, Z., Zhang, L., Li, Q., Fan, H., ... & Hu, X. (2021). Pyrolysis of cellulose: Evolution of functionalities and structure of bio-char versus temperature. Renewable and Sustainable Energy Reviews, 135, 110416.
Mutailipu, M., Li, J., & Pan, S. (2024). Looking Back the Nonlinear Optical Crystals in a Functionalized Unit's Perspective. Advanced Functional Materials, 2419204.
Copyright (c) 2025 FUDMA JOURNAL OF SCIENCES

This work is licensed under a Creative Commons Attribution 4.0 International License.
FUDMA Journal of Sciences