BIOREMEDIATION: A SUPERIOR ALTERNATIVE FOR REMEDIATING TANNERY EFFLUENT-CONTAMINATED SOIL

  • Aminu Muhammad Gusau Microbiology Department, Usmanu Danfodiyo University Sokoto, Sokoto State, Nigeria
  • Aminu Yusuf Fardami Department of Microbiology Usmanu Danfodiyo University Sokoto
Keywords: Soil washing, Thermal desorption, Bioremediation, Phytoremediation, Chromium, Persistent Organic Pollutants (POPs)

Abstract

Tannery effluent poses significant risks to soil health, primarily through contamination with heavy metals like chromium, sulphides, and persistent organic pollutants (POPs). These toxic substances inhibit microbial activity, reducing nutrient cycling and organic matter decomposition essential for soil fertility. Beneficial microorganisms, including nitrogen-fixing bacteria, are particularly affected, leading to altered microbial communities dominated by less advantageous, metal-tolerant species. Accumulation of POPs and heavy metals disrupts soil enzymatic activities, interferes with plant root growth, and complicates remediation efforts due to pollutant migration to groundwater and potential entry into the food chain. Prolonged exposure to such contaminants diminishes soil fertility, reduces resilience, and disrupts ecosystem services, posing threats to agricultural productivity and environmental health. This review was aimed to outline what made bioremediation a superior treatment technology among other methods used in remediating tannery effluent contaminated soil. Efforts to mitigate tannery effluent impacts involve a combination of physical, chemical, and biological remediation technologies. Physical methods like soil washing, flushing, and thermal desorption focus on removing or isolating contaminants, while chemical approaches such as oxidation, reduction, and stabilization transform pollutants to less harmful forms or immobilize them. Biological remediation leverages microorganisms and plants to detoxify contaminants sustainably. Bioremediation strategies with aid of bioaugmentation and biostimulation do enhance microbial activity to address organic and inorganic pollutants effectively more than physical and chemical methods. Another excellent bioremediation technology called phytoremediation can also address organic and inorganic pollutants effectively, Achieving better remediation technique should be coupled with stringent industrial regulations, sustainable tanning methods, and stakeholder awareness

References

Abdalrahman, G. A., Lai, S. H., Snounu, I., Kumar, P., Sefelnasr, A., Sherif, M., & El-shafie, A. (2021). Review on wastewater treatment ponds clogging under artificial recharge: Impacting factors and future modelling. Journal of Water Process Engineering, 40, 101848. DOI: https://doi.org/10.1016/j.jwpe.2020.101848

Adamo, P., Agrelli, D., Zampella, M., & Caporale, A. G. (2024). Chemical speciation to assess bioavailability, bioaccessibility, and geochemical forms of potentially toxic metals (PTMs) in polluted soils. In Environmental geochemistry (pp. 211-269). Elsevier. DOI: https://doi.org/10.1016/B978-0-443-13801-0.00007-4

Adepoju, A. O., Femi-Adepoju, A., Jalloh, A., & Faeflen, S. (2024). Soil pollution and management practices. In Environmental Pollution and Public Health (pp. 187-236). Elsevier. DOI: https://doi.org/10.1016/B978-0-323-95967-4.00011-8

Agwu, J. P. (2024). Assessment of Informal Sector Activities and Its Impacts on the Physical Environment of Abakiliki Metropolis, Ebonyi State, Nigeria.

Ahmed, S. F., Mofijur, M., Nuzhat, S., Chowdhury, A. T., Rafa, N., Uddin, M. A., ... & Show, P. L. (2021). Recent developments in physical, biological, chemical, and hybrid treatment techniques for removing emerging contaminants from wastewater. Journal of hazardous materials, 416, 125912. DOI: https://doi.org/10.1016/j.jhazmat.2021.125912

Alam, M. S., Hasan, M. J., Haque, P., & Rahman, M. M. (2024). Sustainable leather tanning: Enhanced properties and pollution reduction through crude protease enzyme treatment. International Journal of Biological Macromolecules, 268, 131858. DOI: https://doi.org/10.1016/j.ijbiomac.2024.131858

Alemu, L. G., Kefale, G. Y., Hailu, R., Tilahun, A., Minbale, E., & Eyasu, A. (2024). Toward Sustainable Leather Processing: A Comprehensive Review of Cleaner Production Strategies and Environmental Impacts. Advances in Materials Science and Engineering, 2024(1), 8117915. DOI: https://doi.org/10.1155/2024/8117915

Alengebawy, A., Ran, Y., Osman, A. I., Jin, K., Samer, M., & Ai, P. (2024). Anaerobic digestion of agricultural waste for biogas production and sustainable bioenergy recovery: a review. Environmental Chemistry Letters, 1-28. DOI: https://doi.org/10.1007/s10311-024-01789-1

Alidoosti, F., Giyahchi, M., Moien, S., & Moghimi, H. (2024). Unlocking the potential of soil microbial communities for bioremediation of emerging organic contaminants: omics-based approaches. Microbial Cell Factories, 23(1), 210. DOI: https://doi.org/10.1186/s12934-024-02485-z

Alsakit, M., Abugharara, A., Aborig, A., & Butt, S. (2024). Technological Innovations for Physical and Chemical Remediation of Oil-contaminated Water and Soil: A Review (Part-II). In Sebha University Conference Proceedings (Vol. 3, No. 2, pp. 76-82).

Alzahrani, A. J., Alghamdi, A. G., & Ibrahim, H. M. (2024). Assessment of Soil Loss Due to Wind Erosion and Dust Deposition: Implications for Sustainable Management in Arid Regions. Applied Sciences, 14(23), 10822. DOI: https://doi.org/10.3390/app142310822

Aparicio, J. D., Raimondo, E. E., Saez, J. M., Costa-Gutierrez, S. B., Alvarez, A., Benimeli, C. S., & Polti, M. A. (2022). The current approach to soil remediation: a review of physicochemical and biological technologies, and the potential of their strategic combination. Journal of Environmental Chemical Engineering, 10(2), 107141. DOI: https://doi.org/10.1016/j.jece.2022.107141

Bala, S., Garg, D., Thirumalesh, B. V., Sharma, M., Sridhar, K., Inbaraj, B. S., & Tripathi, M. (2022). Recent strategies for bioremediation of emerging pollutants: a review for a green and sustainable environment. Toxics, 10(8), 484. DOI: https://doi.org/10.3390/toxics10080484

Banat, I. M., Franzetti, A., Gandolfi, I., Bestetti, G., Martinotti, M. G., Fracchia, L., Fracchia, M. L. Smyth, T. J. & Marchant, R. (2010). Microbial biosurfactants production, applications and future potential. Applied microbiology and biotechnology, 87, 427-444. DOI: https://doi.org/10.1007/s00253-010-2589-0

Baskaran, D., & Byun, H. S. (2024). Current trend of polycyclic aromatic hydrocarbon bioremediation: Mechanism, artificial mixed microbial strategy, machine learning, ground application, cost and policy implications. Chemical Engineering Journal, 155334. DOI: https://doi.org/10.1016/j.cej.2024.155334

Bharti, S. (2024). Recent advances in heavy metal removal from wastewater using nanomaterials and cloud point extraction: a comprehensive review. International Journal of Environmental Science and Technology, 1-28.

Bhat, S. A., Bashir, O., Haq, S. A. U., Amin, T., Rafiq, A., Ali, M., ... & Sher, F. (2022). Phytoremediation of heavy metals in soil and water: An eco-friendly, sustainable and multidisciplinary approach. Chemosphere, 303, 134788. DOI: https://doi.org/10.1016/j.chemosphere.2022.134788

Buljan, J., & Rajamani, S. G. (2024). Challenges in the Treatment of Tannery Effluents. In Emerging Trends in Leather Science and Technology (pp. 131-175). Singapore: Springer Nature Singapore. DOI: https://doi.org/10.1007/978-981-99-9754-1_5

Bukar, U. A., Kawo, A. H., Yahaya, S., Inuwa, A. B., & Fardami, A. Y. (2025a). Biosurfactant Properties and its Application In Chromium Removal: A Review. Fudma Journal of Sciences, 9(1), 273-287. DOI: https://doi.org/10.33003/fjs-2025-0901-3069

Bukar, U. A., Kawo, A. H., Aminu, B. M., Fardami, A. Y., Hauwa, H., Ismail, H., Usman, R. A. & Aliyu, A. (2025b). Effect of Different Carbon Sources on Biosurfactant Production by Bacteria Isolated from Hydrocarbon-Contaminated Soil. In Controlling Environmental Pollution: Practical Solutions (pp. 307-323). Singapore: Springer Nature Singapore. DOI: https://doi.org/10.1007/978-981-97-8931-3_17

Cao, J., Jiang, Y., Tan, X., Li, L., Cao, S., Dou, J., ... & Zhu, H. (2024). Sludge-based biochar preparation: Pyrolysis and co-pyrolysis methods, improvements, and environmental applications. Fuel, 373, 132265. DOI: https://doi.org/10.1016/j.fuel.2024.132265

Chen, S., Wang, X., Zhao, Q., Xu, Q., & Zhang, Y. (2024). Dissecting the Simultaneous Extracellular/Intracellular Contributions to Cr (VI) Reduction under Aerobic and Anaerobic Conditions Using the Newly Isolating Cr (VI)-Reducing Bacterium of Pseudomonas sp. HGB10. Microorganisms, 12(10), 1958. DOI: https://doi.org/10.3390/microorganisms12101958

Choudhary, M., Singh, D., Parihar, M., Choudhary, K. B., Nogia, M., Samal, S. K., & Mishra, R. (2024). Impact of municipal solid waste on the environment, soil, and human health. In Waste Management for Sustainable and Restored Agricultural Soil (pp. 33-58). Academic Press. DOI: https://doi.org/10.1016/B978-0-443-18486-4.00011-7

Contreras-Salgado, E. A., Snchez-Morn, A. G., Rodrguez-Preciado, S. Y., Sifuentes-Franco, S., Rodrguez-Rodrguez, R., Macas-Barragn, J., & Daz-Zaragoza, M. (2024). Multifaceted Applications of Synthetic Microbial Communities: Advances in Biomedicine, Bioremediation, and Industry. Microbiology Research, 15(3), 1709-1727. DOI: https://doi.org/10.3390/microbiolres15030113

Dada, M. A., Obaigbena, A., Majemite, M. T., Oliha, J. S., & Biu, P. W. (2024). Innovative approaches to waste resource management: implications for environmental sustainability and policy. Engineering Science & Technology Journal, 5(1), 115-127. DOI: https://doi.org/10.51594/estj.v5i1.731

Dalbanjan, N. P., Eelager, M. P., Korgaonkar, K., Gonal, B. N., Kadapure, A. J., Arakera, S. B., & Kumar, S. P. (2024). Descriptive review on conversion of waste residues into valuable bionanocomposites for a circular bioeconomy. Nano-Structures & Nano-Objects, 39, 101265. DOI: https://doi.org/10.1016/j.nanoso.2024.101265

Dehkordi, M. M., Nodeh, Z. P., Dehkordi, K. S., Khorjestan, R. R., & Ghaffarzadeh, M. (2024). Soil, air, and water pollution from mining and industrial activities: sources of pollution, environmental impacts, and prevention and control methods. Results in Engineering, 102729. DOI: https://doi.org/10.1016/j.rineng.2024.102729

Delgado, A., & Gmez, J. A. (2024). The Soil: Physical, Chemical, and Biological Properties. In Principles of agronomy for sustainable agriculture (pp. 15-30). Cham: Springer International Publishing. DOI: https://doi.org/10.1007/978-3-031-69150-8_2

Dervash, M. A., Yousuf, A., Bhat, M. A., & Ozturk, M. (2024). Soil Remediation: Biological Approaches, Regulatory Frameworks, and Circular Economy. In Soil Organisms: Deciphering the Life Beneath Our Feet (pp. 107-117). Cham: Springer Nature Switzerland. DOI: https://doi.org/10.1007/978-3-031-66293-5_10

Devendrapandi, G., Liu, X., Balu, R., Ayyamperumal, R., Arasu, M. V., Lavanya, M., ... & Karthika, P. C. (2024). Innovative remediation strategies for persistent organic pollutants in soil and water: A comprehensive review. Environmental Research, 118404. DOI: https://doi.org/10.1016/j.envres.2024.118404

Dey, P., Lincy, K. B., & Osborne, J. W. (2024). An insight on the plausible biological and non-biological detoxification of heavy metals in tannery waste: A comprehensive review. Environmental Research, 119451. DOI: https://doi.org/10.1016/j.envres.2024.119451

Dotaniya, M. L., Dotaniya, C. K., Kumar, K., Yadav, R. K., Doutaniya, R. K., Meena, H. M., ... & Lata, M. (2024). Ecosystem Services from Rehabilitated Waste Dumpsites. Biodiversity and Ecosystem Services on PostIndustrial Land, 329-355. DOI: https://doi.org/10.1002/9781394187416.ch13

Dwivedi, S. K. (2023). Fungi mediated detoxification of heavy metals: Insights on mechanisms, influencing factors and recent developments. Journal of Water Process Engineering, 53, 103800. DOI: https://doi.org/10.1016/j.jwpe.2023.103800

Ehis-Eriakha, C. B., Chikere, C. B., Akaranta, O., & Akemu, S. E. (2024). A comparative assesment of biostimulants in microbiome-based ecorestoration of polycyclic aromatic hydrocarbon polluted soil. Brazilian Journal of Microbiology, 1-22. DOI: https://doi.org/10.1007/s42770-024-01556-y

Ekka, P., Patra, S., Upreti, M., Kumar, G., Kumar, A., & Saikia, P. (2023). Land Degradation and its impacts on Biodiversity and Ecosystem services. Land and Environmental Management through Forestry, 77-101. DOI: https://doi.org/10.1002/9781119910527.ch4

Ekpan, F. D. M., Ori, M. O., Samuel, H. S., & Egwuatu, O. P. (2024). Production of Bioethanol from Lignocellulosic Waste Materials. Eurasian Journal of Science and Technology, 4(3).

Ethiraj, S., Samuel, M. S., & Indumathi, S. M. (2024). A comprehensive review of the challenges and opportunities in microalgae-based wastewater treatment for eliminating organic, inorganic, and emerging pollutants. Biocatalysis and Agricultural Biotechnology, 103316. DOI: https://doi.org/10.1016/j.bcab.2024.103316

Fardami, A Y, Ibrahim, U.B., Sabitu, M., Lawal, A., Adamu, M. A., Aliyu, A., Lawal, I., Dalhatu, A.I., Sanus, M.Z., and Farouq. A. A. (2023). Mechanisms of Bacterial Resistance to Heavy Metals: A Mini Review. UMYU Scientifica 2,1: 76-87. DOI: https://doi.org/10.56919/usci.2123.010

Fardami, A. Y., & Abdullahi, S. (2024). Bacterial Bisorption as an Approach for the Bioremediation of Chromium Contaminated Soils: An Overview. UMYU Journal of Microbiology Research, 9(3), 374-387. DOI: https://doi.org/10.47430/ujmr.2493.045

Farhan, A., Zulfiqar, M., Samiah, Rashid, E. U., Nawaz, S., Iqbal, H. M., ... & Zdarta, J. (2023). Removal of toxic metals from water by nanocomposites through advanced remediation processes and photocatalytic oxidation. Current Pollution Reports, 9(3), 338-358. DOI: https://doi.org/10.1007/s40726-023-00253-y

Farias, J. P., Okeke, B. C., Demarco, C. F., Carlos, F. S., da Silva, R. F., da Silva, M. A., ... & Andreazza, R. (2024). Cadmium Contamination in Aquatic Environments: Detoxification Mechanisms and Phytoremediation Approach. Sustainability, 16(22), 10072. DOI: https://doi.org/10.3390/su162210072

Fazia, C., Nahiduzzaman, K. M., Al-Ramadan, B., Aldosary, A., & Moraci, F. (2024). Counteract Soil Consumption through Ecosystem Services and Landscape Restoration for an Efficient Urban Regeneration. Land, 13(3), 323. DOI: https://doi.org/10.3390/land13030323

Fraga-Corral, M., Garca-Oliveira, P., Pereira, A. G., Loureno-Lopes, C., Jimenez-Lopez, C., Prieto, M. A., & Simal-Gandara, J. (2020). Technological application of tannin-based extracts. Molecules, 25(3), 614. DOI: https://doi.org/10.3390/molecules25030614

Gangola, S., Joshi, S., Kumar, S., & Pandey, S. C. (2019). Comparative analysis of fungal and bacterial enzymes in biodegradation of xenobiotic compounds. In Smart bioremediation technologies (pp. 169-189). Academic Press. DOI: https://doi.org/10.1016/B978-0-12-818307-6.00010-X

Gelaye, Y. (2024). Public health and economic burden of heavy metals in Ethiopia. Heliyon, 10(19). DOI: https://doi.org/10.1016/j.heliyon.2024.e39022

Gendaszewska, D., Pipiak, P., Wieczorek, D., & Sieczyska, K. (2024). Experimental Study on Chrome Tanned Leather Shavings ModificationProperties and Prospective for Future Application. Processes, 12(1), 228. DOI: https://doi.org/10.3390/pr12010228

Genske, D. D. (2024). Contaminated Sites and Waste Disposal. In Engineering Geology: An Introduction (pp. 399-430). Berlin, Heidelberg: Springer Berlin Heidelberg. DOI: https://doi.org/10.1007/978-3-662-68762-8_13

Alsakit, M., Abugharara, A., Aborig, A., & Butt, S. (2024). Technological Innovations for Physical and Chemical Remediation of Oil-contaminated Water and Soil: A Review (Part-II). In Sebha University Conference Proceedings (Vol. 3, No. 2, pp. 76-82).

Gidudu, B., & Chirwa, E. M. (2022). The role of pH, electrodes, surfactants, and electrolytes in electrokinetic remediation of contaminated soil. Molecules, 27(21), 7381. DOI: https://doi.org/10.3390/molecules27217381

Gupta, A.K., Verma, R.K. (2022). Understanding the Effect of Irrigation with Chromium Loaded Tannery Effluent on Ocimum basilicum L. vis-a-vis Metal Uptake. Bull Environ Contam Toxicol 109, 747756. https://doi.org/10.1007/s00128-022-03599-z DOI: https://doi.org/10.1007/s00128-022-03599-z

Gusau, A. M., Rabah, A. B., Fardami, A. Y., & Magami, I. M. (2024). Molecular Identification of Potent Chromium Reducing Bacteria Isolated from Hydrocarbon-Contaminated Soil within Sokoto Metropolis. UMYU Journal of Microbiology Research, 9(3), 365-373. DOI: https://doi.org/10.47430/ujmr.2493.044

Hagage, M., Abdulaziz, A. M., Elbeih, S. F., & Hewaidy, A. G. A. (2024). Monitoring soil salinization and waterlogging in the northeastern Nile Delta linked to shallow saline groundwater and irrigation water quality. Scientific Reports, 14(1), 27838. DOI: https://doi.org/10.1038/s41598-024-77954-x

Hasan, M. M., & Tarannum, M. N. (2024). Adverse Impacts of Microplastics on Soil Physicochemical Properties and Crop Health in Agricultural Systems. Journal of Hazardous Materials Advances, 100528. DOI: https://doi.org/10.1016/j.hazadv.2024.100528

Hassan, M. M., Harris, J., Busfield, J. J., & Bilotti, E. (2023). A review of the green chemistry approaches to leather tanning in imparting sustainable leather manufacturing. Green Chemistry. DOI: https://doi.org/10.1039/D3GC02948D

Helwig, K., Niemi, L., Stenuick, J. Y., Alejandre, J. C., Pfleger, S., Roberts, J., ... & Pahl, O. (2024). Broadening the perspective on reducing pharmaceutical residues in the environment. Environmental Toxicology and Chemistry, 43(3), 653-663. DOI: https://doi.org/10.1002/etc.5563

Henderson, S. (2024). Life, Art, and Industry: A History of the English and Welsh Leather Economy, 1700-1900 (Doctoral dissertation).

Hnini, M., Rabeh, K., & Oubohssaine, M. (2024). Interactions between beneficial soil microorganisms (PGPR and AMF) and host plants for environmental restoration: A systematic review. Plant Stress, 100391. DOI: https://doi.org/10.1016/j.stress.2024.100391

Hu, C., Yang, Z., Chen, Y., Tang, J., Zeng, L., Peng, C., ... & Wang, J. (2024). Unlocking soil revival: The role of sulfate-reducing bacteria in mitigating heavy metal contamination. Environmental Geochemistry and Health, 46(10), 417. DOI: https://doi.org/10.1007/s10653-024-02190-1

Innocent, M. O., Mustapha, A., Abdulsalam, M., Livinus, M. U., Samuel, J. O., Elelu, S. A., ... & Muhammad, A. S. (2024). Soil Microbes and Soil Contamination. In Soil Microbiome in Green Technology Sustainability (pp. 3-35). Cham: Springer Nature Switzerland. DOI: https://doi.org/10.1007/978-3-031-71844-1_1

Islam, M. M., Tujjohra, F., Roy, U. K., & Rahman, M. M. (2024). A circular economy approach for utilization of tannery fleshing hydrolysate and kitchen wastes into organic fertilizer through enzymatic decomposition. Biochemical Engineering Journal, 212, 109519. DOI: https://doi.org/10.1016/j.bej.2024.109519

Iyiola, A. O., Ipinmoroti, M. O., Akingba, O. O., Ewutanure, J. S., Setufe, S. B., Bilikoni, J., ... & Wangboje, O. M. (2024). Organic chemical pollutants within water systems and sustainable management strategies. In Water Crises and Sustainable Management in the Global South (pp. 211-251). Singapore: Springer Nature Singapore. DOI: https://doi.org/10.1007/978-981-97-4966-9_7

Jaffari, Z. H., Hong, J., & Park, K. Y. (2024). A systematic review of innovations in tannery solid waste treatment: A viable solution for the circular economy. Science of The Total Environment, 174848. DOI: https://doi.org/10.1016/j.scitotenv.2024.174848

Kalsoom, A., & Batool, R. (2020). Biological and nonbiological approaches for treatment of Cr (VI) in Ma, L., Chen, N., Feng, C., & Yang, Q. (2024). Recent advances in enhanced technology of Cr (VI) bioreduction in aqueous condition: A review. Chemosphere, 141176.Tannery Effluent. Emerging Eco-friendly Green Technologies for Wastewater Treatment, 147-170. DOI: https://doi.org/10.1007/978-981-15-1390-9_7

Kaur, G., & Sood, P. (2025). Significance of biological approaches/bioremediation of wastewater treatment over physicochemical methods: a comparative analysis. In Biotechnologies for Wastewater Treatment and Resource Recovery (pp. 211-225). Elsevier. DOI: https://doi.org/10.1016/B978-0-443-27376-6.00027-X

Khan, F. B. I., & Akond, M. A. (2024). Legal Compliance of Waste Management in Tannery Industrial Estate in Bangladesh: An Assessment from Environmental Criminological Perspective. TWIST, 19(1), 306-320.

Khare, S., Singhal, A., Rallapalli, S., & Mishra, A. (2024). Bio-chelate assisted leaching for enhanced heavy metal remediation in municipal solid waste compost. Scientific Reports, 14(1), 14238. DOI: https://doi.org/10.1038/s41598-024-65280-1

Khatun, J., Mukherjee, A., & Dhak, D. (2024). Emerging contaminants of tannery sludge and their environmental impact and health hazards. In Environmental engineering and waste management: Recent trends and perspectives (pp. 3-28). Cham: Springer Nature Switzerland. DOI: https://doi.org/10.1007/978-3-031-58441-1_1

Khokhar, K., Bhardwaj, K. K., & Goel, V. (2024). Sewage Water Use in Crop Production and Its Effect on Physico-Chemical and Biological Properties of Soil: A Review. Journal of Experimental Agriculture International, 46(7), 200-210. DOI: https://doi.org/10.9734/jeai/2024/v46i72575

Kiran, P. S., Mandal, P., Jain, M., Ghosal, P. S., & Gupta, A. K. (2024). A comprehensive review on the treatment of pesticide-contaminated wastewater with special emphasis on organophosphate pesticides using constructed wetlands. Journal of Environmental Management, 368, 122163. DOI: https://doi.org/10.1016/j.jenvman.2024.122163

Kolopajlo, L. (2024). A review of sustainable leather tanning. Green Chemical Processes: Developments in Science, Math, Engineering and Technology, 11, 67. DOI: https://doi.org/10.1515/9783110799088-005

Kour, D., Kaur, T., Devi, R., Yadav, A., Singh, M., Joshi, D., ... & Saxena, A. K. (2021). Beneficial microbiomes for bioremediation of diverse contaminated environments for environmental sustainability: present status and future challenges. Environmental Science and Pollution Research, 28, 24917-24939. DOI: https://doi.org/10.1007/s11356-021-13252-7

Kumar, A., Kumar, R., Parnian, A., Mahbod, M., & AbdelRahman, M. A. (2025). Bioremediation: a better technique for wastewater treatment and resource recovery. In Biotechnologies for Wastewater Treatment and Resource Recovery (pp. 17-32). Elsevier. DOI: https://doi.org/10.1016/B978-0-443-27376-6.00007-4

Kumar, A., Singsh, A. K., & Chandra, R. (2021). Recent advances in physicochemical and biological approaches for degradation and detoxification of industrial wastewater. Emerging treatment technologies for waste management, 1-28. DOI: https://doi.org/10.1007/978-981-16-2015-7_1

Kumar, R., Basu, A., Bishayee, B., Chatterjee, R. P., Behera, M., Ang, W. L., ... & Jeon, B. H. (2023). Management of tannery waste effluents towards the reclamation of clean water using an integrated membrane system: A state-of-the-art review. Environmental research, 229, 115881. DOI: https://doi.org/10.1016/j.envres.2023.115881

Kumar, V., Pallavi, P., & Raut, S. (2025). Novel Microbial Techniques for Pollutant Environment: Their Principles, Advantages, Limitations, and Future Prospects. In Advanced Green Technology for Environmental Sustainability and Circular Economy (pp. 64-88). CRC Press. DOI: https://doi.org/10.1201/9781003517108-5

Kuppan, N., Padman, M., Mahadeva, M., Srinivasan, S., & Devarajan, R. (2024). A comprehensive review of sustainable bioremediation techniques: eco friendly solutions for waste and pollution management. Waste Management Bulletin. DOI: https://doi.org/10.1016/j.wmb.2024.07.005

Kuppusamy, S., Palanisami, T., Megharaj, M., Venkateswarlu, K., & Naidu, R. (2016). In-situ remediation approaches for the management of contaminated sites: a comprehensive overview. Reviews of Environmental Contamination and Toxicology Volume 236, 1-115. DOI: https://doi.org/10.1007/978-3-319-20013-2_1

Lavanya, M. B., Viswanath, D. S., & Sivapullaiah, P. V. (2024). Phytoremediation: An eco-friendly approach for remediation of heavy metal-contaminated soils-A comprehensive review. Environmental Nanotechnology, Monitoring & Management, 100975. DOI: https://doi.org/10.1016/j.enmm.2024.100975

Liu, H., Tan, X., Guo, J., Liang, X., Xie, Q., & Chen, S. (2020). Bioremediation of oil-contaminated soil by combination of soil conditioner and microorganism. Journal of Soils and Sediments, 20, 2121-2129. DOI: https://doi.org/10.1007/s11368-020-02591-6

Liu, N., Zhao, J., Du, J., Hou, C., Zhou, X., Chen, J., & Zhang, Y. (2024). Non-phytoremediation and phytoremediation technologies of integrated remediation for water and soil heavy metal pollution: A comprehensive review. Science of The Total Environment, 174237. DOI: https://doi.org/10.1016/j.scitotenv.2024.174237

L, H., Wei, J. L., Tang, G. X., Chen, Y. S., Huang, Y. H., Hu, R., ... & Li, Q. X. (2024). Microbial consortium degrading of organic pollutants: Source, degradation efficiency, pathway, mechanism and application. Journal of Cleaner Production, 141913. DOI: https://doi.org/10.1016/j.jclepro.2024.141913

Ma, L., Chen, N., Feng, C., & Yang, Q. (2024). Recent advances in enhanced technology of Cr (VI) bioreduction in aqueous condition: A review. Chemosphere, 141176. DOI: https://doi.org/10.1016/j.chemosphere.2024.141176

Marrucci, L., Corcelli, F., Daddi, T., & Iraldo, F. (2022). Using a life cycle assessment to identify the risk of circular washing in the leather industry. Resources, Conservation and Recycling, 185, 106466. DOI: https://doi.org/10.1016/j.resconrec.2022.106466

Masinga, P., Simbanegavi, T. T., Makuvara, Z., Marumure, J., Chaukura, N., & Gwenzi, W. (2024). Emerging organic contaminants in the soilplant-receptor continuum: transport, fate, health risks, and removal mechanisms. Environmental Monitoring and Assessment, 196(4), 367. DOI: https://doi.org/10.1007/s10661-023-12282-7

Mo, L., Zanella, A., Squartini, A., Ranzani, G., Bolzonella, C., Concheri, G., ... & Xu, G. (2024). Anthropogenic vs. natural habitats: Higher microbial biodiversity pays the trade-off of lower connectivity. Microbiological Research, 282, 127651. DOI: https://doi.org/10.1016/j.micres.2024.127651

Mohanty, C., Kumar, V., Bisoi, S., Das, P. K., Farzana, Ahmad, M., ... & Gangwar, S. P. (2024). Ecological implications of chromium-contaminated effluents from Indian tanneries and their phytoremediation: a sustainable approach. Environmental Monitoring and Assessment, 196(10), 995. DOI: https://doi.org/10.1007/s10661-024-13122-y

Mokrani, S., Houali, K., Yadav, K. K., Arabi, A. I. A., Eltayeb, L. B., AwjanAlreshidi, M., ... & Nabti, E. H. (2024). Bioremediation techniques for soil organic pollution: Mechanisms, microorganisms, and technologies-A comprehensive review. Ecological Engineering, 207, 107338. DOI: https://doi.org/10.1016/j.ecoleng.2024.107338

Nag, M., Lahiri, D., Ghosh, S., Sarkar, T., Pati, S., Das, A. P., ... & Ray, R. R. (2024). Application of microorganisms in biotransformation and bioremediation of environmental contaminant: a review. Geomicrobiology Journal, 41(4), 374-391. DOI: https://doi.org/10.1080/01490451.2023.2261443

Narayanan, K., & Chellappan, R. K. (2024). Exploring the growth and phytoremediation efficacy of Suaeda fruticosa in agricultural soil contaminated by shrimp aquaculture. International Journal of Phytoremediation, 1-11. DOI: https://doi.org/10.1080/15226514.2024.2426177

Narayanan, M., Ali, S. S., & El-Sheekh, M. (2023). A comprehensive review on the potential of microbial enzymes in multipollutant bioremediation: Mechanisms, challenges, and future prospects. Journal of Environmental Management, 334, 117532. DOI: https://doi.org/10.1016/j.jenvman.2023.117532

Nas, J. S., & Medina, P. M. (2024). Evaluating the effects of sodium metabisulfite on the cognitive and motor function in Drosophila melanogaster. Narra J, 4(3), e1338-e1338. DOI: https://doi.org/10.52225/narra.v4i3.1338

Nasiri, A., Jamshidi-Zanjani, A., & Darban, A. K. (2020). Application of enhanced electrokinetic approach to remediate Cr-contaminated soil: effect of chelating agents and permeable reactive barrier. Environmental Pollution, 266, 115197. DOI: https://doi.org/10.1016/j.envpol.2020.115197

Wang, M., Kong, D., Liu, L., Wen, G., & Zhang, F. (2024). In Situ Conductive Heating for Thermal Desorption of Volatile Organic-Contaminated Soil Based on Solar Energy. Sustainability (2071-1050), 16(19). DOI: https://doi.org/10.3390/su16198565

Ngobeni, P. V., Mpofu, A. B., Ranjan, A., & Welz, P. J. (2024). A Critical Review of Systems for Bioremediation of Tannery Effluent with a Focus on Nitrogenous and Sulfurous Species Removal and Resource Recovery. Processes, 12(7). DOI: https://doi.org/10.3390/pr12071527

Nur-E-Alam, M., Mia, M. A. S., Ahmad, F., & Rahman, M. M. (2020). An overview of chromium removal techniques from tannery effluent. Applied Water Science, 10(9), 205. DOI: https://doi.org/10.1007/s13201-020-01286-0

Ojuederie, O. B., & Babalola, O. O. (2017). Microbial and plant-assisted bioremediation of heavy metal polluted environments: a review. International journal of environmental research and public health, 14(12), 1504. DOI: https://doi.org/10.3390/ijerph14121504

Osadebe, A. U., Ogugbue, C. J., & Okpokwasili, G. C. (2024). Bioremediation of crude oil polluted surface water using specialised alginate-based nanocomposite beads loaded with hydrocarbon-degrading bacteria and inorganic nutrients. Bioremediation Journal, 1-23. DOI: https://doi.org/10.1080/10889868.2024.2381022

Pande V, Pandey SC, Sati D, Bhatt P and Samant M (2022). Microbial Interventions in Bioremediation of Heavy Metal Contaminants in Agroecosystem. Front. Microbiol. 13:824084. https://doi.org/10.3389/fmicb.2022.824084. DOI: https://doi.org/10.3389/fmicb.2022.824084

Pandit, S., Yadav, N., Sharma, P., Prakash, A., & Kuila, A. (2024). Life cycle assessment and techno-economic analysis of nanotechnology-based wastewater treatment: Status, challenges and future prospectives. Journal of the Taiwan Institute of Chemical Engineers, 105567. DOI: https://doi.org/10.1016/j.jtice.2024.105567

Pasricha, S., Mathur, V., Garg, A., Lenka, S., Verma, K., & Agarwal, S. (2021). Molecular mechanisms underlying heavy metal uptake, translocation and tolerance in hyperaccumulators-an analysis: Heavy metal tolerance in hyperaccumulators. Environmental Challenges, 4, 100197. DOI: https://doi.org/10.1016/j.envc.2021.100197

Patel, A. K., Singhania, R. R., Albarico, F. P. J. B., Pandey, A., Chen, C. W., & Dong, C. D. (2022). Organic wastes bioremediation and its changing prospects. Science of the Total Environment, 824, 153889. DOI: https://doi.org/10.1016/j.scitotenv.2022.153889

Pathak, V. M., Verma, V. K., Rawat, B. S., Kaur, B., Babu, N., Sharma, A., ... & Cunill, J. M. (2022). Current status of pesticide effects on environment, human health and its eco-friendly management as bioremediation: A comprehensive review. Frontiers in microbiology, 13, 962619. DOI: https://doi.org/10.3389/fmicb.2022.962619

Paul, A., Dey, S., Ram, D. K., & Das, A. P. (2024). Hexavalent chromium pollution and its sustainable management through bioremediation. Geomicrobiology Journal, 41(4), 324-334. DOI: https://doi.org/10.1080/01490451.2023.2218377

Pedrinho, A., Mendes, L. W., de Araujo Pereira, A. P., Araujo, A. S. F., Vaishnav, A., Karpouzas, D. G., & Singh, B. K. (2024). Soil microbial diversity plays an important role in resisting and restoring degraded ecosystems. Plant and Soil, 1-25. DOI: https://doi.org/10.1007/s11104-024-06489-x

Perez-Vazquez, A., Barciela, P., & Prieto, M. A. (2024). In Situ and Ex Situ Bioremediation of Different Persistent Soil Pollutants as Agroecology Tool. Processes, 12(10), 2223. DOI: https://doi.org/10.3390/pr12102223

Pradhan, N., & Kumar, A. (2024). Harnessing In Silico Techniques for Bioremediation Solutions. Microbes Based Approaches for the Management of Hazardous Contaminants, 312-320. DOI: https://doi.org/10.1002/9781119851158.ch20

Pratap, B., Kumar, S., Nand, S., Azad, I., Bharagava, R. N., Ferreira, L. F. R., & Dutta, V. (2023). Wastewater generation and treatment by various eco-friendly technologies: Possible health hazards and further reuse for environmental safety. Chemosphere, 313, 137547. DOI: https://doi.org/10.1016/j.chemosphere.2022.137547

Priya, A. K., Muruganandam, M., Kumar, A., Senthilkumar, N., Shkir, M., Pandit, B., ... & Ubaidullah, M. (2024). Recent advances in microbial-assisted degradation and remediation of xenobiotic contaminants; challenges and future prospects. Journal of Water Process Engineering, 60, 105106. DOI: https://doi.org/10.1016/j.jwpe.2024.105106

Priyadarshini, A., Ismail, M. H. B., Singh, A., & Routray, W. (2024). Livestock product processing technology. In Engineering Applications in Livestock Production (pp. 295-318). Academic Press. DOI: https://doi.org/10.1016/B978-0-323-98385-3.00014-1

Pundir, A., Thakur, M. S., Goel, B., Radha, Kumar, A., Prakash, S., ... & Kumar, M. (2024). Innovations in tannery wastewater management: a review of zero liquid discharge technology. International Journal of Environmental Science and Technology, 1-22. DOI: https://doi.org/10.1007/s13762-024-05986-x

Raj, V., Kumar, A., Srivastav, A. L., Kumar, R., & Karn, S. K. (2025). Bioremediation: an emerging and sustainable biotechnological method for restoring polluted water ecosystems. In Biotechnologies for Wastewater Treatment and Resource Recovery (pp. 123-133). Elsevier. DOI: https://doi.org/10.1016/B978-0-443-27376-6.00024-4

Rajendran, S., Afrin, Kalairaj, A., Panda, R. C., & Senthilvelan, T. (2024). A comprehensive review on enzymatic dehairing of animal skin using soybean enzymes: a novel approach for a cleaner leather processing operation. Biomass Conversion and Biorefinery, 1-12. DOI: https://doi.org/10.1007/s13399-024-05828-3

Rizwan, M., Usman, K., & Alsafran, M. (2024). Ecological impacts and potential hazards of nickel on soil microbes, plants, and human health. Chemosphere, 142028. DOI: https://doi.org/10.1016/j.chemosphere.2024.142028

Saeed, M. U., Hussain, N., Javaid, M., & Zaman, H. (2023). Microbial remediation for environmental cleanup. In Advanced Microbial Technology for Sustainable Agriculture and Environment (pp. 247-274). Academic Press. DOI: https://doi.org/10.1016/B978-0-323-95090-9.00010-8

Sahu, P., Upadhyay, S. C., Liya, K., Gohil, D., Srinivasan, S. V., & Kumar, A. (2024). Waste management and salt recovery from solid residue of tannery common effluent treatment plant. Indian Chemical Engineer, 1-13. DOI: https://doi.org/10.1080/00194506.2023.2300148

Saidon, N. B., Szab, R., Budai, P., & Lehel, J. (2024). Trophic transfer and biomagnification potential of environmental contaminants (heavy metals) in aquatic ecosystems. Environmental pollution, 340, 122815. DOI: https://doi.org/10.1016/j.envpol.2023.122815

Saini, K., Singh, J., Malik, S., Saharan, Y., Goyat, R., Umar, A., ... & Baskoutas, S. (2024). Metal-Organic Frameworks: A promising solution for efficient removal of heavy metal ions and organic pollutants from industrial wastewater. Journal of Molecular Liquids, 124365. DOI: https://doi.org/10.1016/j.molliq.2024.124365

Saleem, M. H., Ali, S., Rehman, M., Rizwan, M., Kamran, M., Mohamed, I. A., ... & Liu, L. (2020). Individual and combined application of EDTA and citric acid assisted phytoextraction of copper using jute (Corchorus capsularis L.) seedlings. Environmental Technology & Innovation, 19, 100895. DOI: https://doi.org/10.1016/j.eti.2020.100895

Samanth, M. (2024). An inclusive evaluation of soil pollution and its remediation by chemical, physical and biological methods. IJCS, 12(4), 05-17. DOI: https://doi.org/10.2139/ssrn.4905334

Sangeetha, P., & Jagtap, S. (2024). Impact of Novel Remediation Technology: Significant Role in the Removal of Toxic Pollutants via Sustainable Approaches. In Industrial Microbiology and Biotechnology: An Insight into Current Trends (pp. 679-701). Singapore: Springer Nature Singapore. DOI: https://doi.org/10.1007/978-981-97-1912-9_27

Sehrawat, A., Phour, M., Kumar, R., & Sindhu, S. S. (2021). Bioremediation of pesticides: an eco-friendly approach for environment sustainability. Microbial Rejuvenation of Polluted Environment: Volume 1, 23-84. DOI: https://doi.org/10.1007/978-981-15-7447-4_2

Selvam, R., Kalaiyarasi, G., & Saritha, B. (2024). Heavy Metal Contamination in Soils: Risks and Remediation. Soil Fertility and Plant Nutrition, 141.

Seth, R., & Meena, A. (2024). Enzymes-based nanomaterial synthesis: an eco-friendly and green synthesis approach. Clean Technologies and Environmental Policy, 1-24. DOI: https://doi.org/10.1007/s10098-024-02854-7

Sharma, J. K., Kumar, N., Singh, N. P., & Santal, A. R. (2023). Phytoremediation technologies and their mechanism for removal of heavy metal from contaminated soil: An approach for a sustainable environment. Frontiers in Plant Science, 14, 1076876. DOI: https://doi.org/10.3389/fpls.2023.1076876

Sharma, P., Gaur, P., Dwivedi, S., Kumari, K., Srivastava, J. K., Dhakar, K., ... & Sim, S. J. (2024). Harnessing microbial potentials by advancing bioremediation of PAHs through molecular insights and genetics. International Biodeterioration & Biodegradation, 194, 105861. DOI: https://doi.org/10.1016/j.ibiod.2024.105861

Shinde, R. M., Ingle, P. U., Trivedi, H. R., Wasule, D., Gaharwar, A., Gade, A. K., ... & Biswas, J. K. (2024). Bioremediation of industrial dye waste effluents aided by GIS applications: a comprehensive review. Environment, Development and Sustainability, 26(5), 10945-10971. DOI: https://doi.org/10.1007/s10668-023-03722-y

Siddiqua, A., Hahladakis, J. N., & Al-Attiya, W. A. K. (2022). An overview of the environmental pollution and health effects associated with waste landfilling and open dumping. Environmental Science and Pollution Research, 29(39), 58514-58536. DOI: https://doi.org/10.1007/s11356-022-21578-z

Sinam, V., Kumar, P., & Singh, J. (2024). Bioremediation and ecorestoration strategies of aquatic environment. In Spatial Modeling of Environmental Pollution and Ecological Risk (pp. 483-499). Woodhead Publishing. DOI: https://doi.org/10.1016/B978-0-323-95282-8.00025-0

Sinduja, M., Sathya, V., Maheswari, M., Dhevagi, P., Kalpana, P., Dinesh, G. K., & Prasad, S. (2022). Evaluation and speciation of heavy metals in the soil of the Sub Urban Region of Southern India. Soil and Sediment Contamination: An International Journal, 31(8), 974-993. DOI: https://doi.org/10.1080/15320383.2022.2030298

Singh, A. K., Bilal, M., Iqbal, H. M., Meyer, A. S., & Raj, A. (2021). Bioremediation of lignin derivatives and phenolics in wastewater with lignin modifying enzymes: Status, opportunities and challenges. Science of the Total Environment, 777, 145988. DOI: https://doi.org/10.1016/j.scitotenv.2021.145988

Singh, K., Kumari, M., & Prasad, K. S. (2023). Tannery effluents: current practices, environmental consequences, human health risks, and treatment options. CLEANSoil, Air, Water, 51(3), 2200303. DOI: https://doi.org/10.1002/clen.202200303

Singh, N. K., Sachan, K., BP, M., Panotra, N., & Katiyar, D. (2024). Building Soil Health and Fertility through Organic Amendments and Practices: A Review. Asian Journal of Soil Science and Plant Nutrition, 10(1), 175-197. DOI: https://doi.org/10.9734/ajsspn/2024/v10i1224

Srivastava, N., Maurya, V. K., Bee, Z., Singh, N., Khare, S., Singh, S., ... & Rai, P. K. (2025). Green Solutions for a blue planet: harnessing bioremediation for sustainable development and circular economies. In Biotechnologies for Wastewater Treatment and Resource Recovery (pp. 283-296). Elsevier. DOI: https://doi.org/10.1016/B978-0-443-27376-6.00028-1

Su, Z., Liu, X., Wang, Z., & Wang, J. (2024). Biochar effects on salt-affected soil properties and plant productivity: A global meta-analysis. Journal of Environmental Management, 366, 121653. DOI: https://doi.org/10.1016/j.jenvman.2024.121653

Sun, Z., Zhao, M., Chen, L., Gong, Z., Hu, J., & Ma, D. (2023). Electrokinetic remediation for the removal of heavy metals in soil: Limitations, solutions and prospection. Science of the Total Environment, 165970. DOI: https://doi.org/10.1016/j.scitotenv.2023.165970

Tadayoni, N. S., Dinari, M., Roy, A., & Karimi Abdolmaleki, M. (2024). Recent Advances in Porous Bio-Polymer Composites for the Remediation of Organic Pollutants. Polymers, 16(11), 1543. DOI: https://doi.org/10.3390/polym16111543

Tadesse, G. L., Guya, T. K., & Walabu, M. (2017). Impacts of tannery effluent on environments and human health: a review article. Advances in Life Science and Technology, 54(10).

Tang, C., Yao, J., Liu, X., Lv, Y., Liu, J., & Cao, Y. (2024). Research progress in utilization of microbial immobilization technology in microbially induced mineralization of heavy metals. Journal of Environmental Chemical Engineering, 114086. DOI: https://doi.org/10.1016/j.jece.2024.114086

Thakur, A., & Kumar, A. (2024). Emerging paradigms into bioremediation approaches for nuclear contaminant removal: From challenge to solution. Chemosphere, 352, 141369. DOI: https://doi.org/10.1016/j.chemosphere.2024.141369

Thulasisingh, A., Ananthakrishnan, K., Raja, A., & Kannaiyan, S. (2024). Bioprospecting of novel and industrially appropriate enzymes: A review. Water, Air, & Soil Pollution, 235(1), 12. DOI: https://doi.org/10.1007/s11270-023-06831-6

Trellu, C., Pechaud, Y., Oturan, N., Mousset, E., van Hullebusch, E. D., Huguenot, D., & Oturan, M. A. (2021). Remediation of soils contaminated by hydrophobic organic compounds: How to recover extracting agents from soil washing solutions?. Journal of hazardous materials, 404, 124137. DOI: https://doi.org/10.1016/j.jhazmat.2020.124137

Tufail, M. A., Iltaf, J., Zaheer, T., Tariq, L., Amir, M. B., Fatima, R., ... & Ayyub, M. (2022). Recent advances in bioremediation of heavy metals and persistent organic pollutants: A review. Science of the Total Environment, 850, 157961. DOI: https://doi.org/10.1016/j.scitotenv.2022.157961

Upadhyay, R., Przysta, W., & Dave, B. (2024). Myco-remediation of synthetic dyes: a comprehensive review on contaminant alleviation mechanism, kinetic study and toxicity analysis. International Journal of Environmental Science and Technology, 1-18. DOI: https://doi.org/10.1007/s13762-024-05793-4

Vasseghian, Y., Nadagouda, M. M., & Aminabhavi, T. M. (2024). Biochar-enhanced bioremediation of eutrophic waters impacted by algal blooms. Journal of environmental management, 367, 122044. DOI: https://doi.org/10.1016/j.jenvman.2024.122044

Wong, W. D., Majnis, M. F., Lai, C. W., Sagadevan, S., & Julkapli, N. M. (2024). Precise Control on Water Treatment by Microfluidic Marvels. Journal of Environmental Chemical Engineering, 113880. DOI: https://doi.org/10.1016/j.jece.2024.113880

Wu, X., Nawaz, S., Li, Y., & Zhang, H. (2024). Environmental health hazards of untreated livestock wastewater: potential risks and future perspectives. Environmental Science and Pollution Research, 31(17), 24745-24767. DOI: https://doi.org/10.1007/s11356-024-32853-6

Xie, S. (2024). Water contamination due to hexavalent chromium and its health impacts: exploring green technology for Cr (VI) remediation. Green Chemistry Letters and Reviews, 17(1), 2356614. DOI: https://doi.org/10.1080/17518253.2024.2356614

Xu, Y., Kong, F., Zhang, M., Du, H., Dai, S., & Zhang, Z. (2024). Effects of initial water and salt content on permeability and microstructure of sodic-saline loessal soils. Bulletin of Engineering Geology and the Environment, 83(12), 496. DOI: https://doi.org/10.1007/s10064-024-04006-z

Yaashikaa, P. R., Kumar, P. S., Jeevanantham, S., & Saravanan, R. (2022). A review on bioremediation approach for heavy metal detoxification and accumulation in plants. Environmental Pollution, 301, 119035. DOI: https://doi.org/10.1016/j.envpol.2022.119035

Yadav, A., Yadav, P., Raj, A., Ferreira, L. F. R., Saratale, G. D., & Bharagava, R. N. (2020). Tannery wastewater: A major source of residual organic pollutants and pathogenic microbes and their treatment strategies. In Microbes in agriculture and environmental development (pp. 245-264). CRC Press. DOI: https://doi.org/10.1201/9781003057819-13

Yadav, P., Petrella, A., Todaro, F., De Gisi, S., Vitone, C., Petti, R., & Notarnicola, M. (2024). Ex Situ Stabilization/Solidification Approaches of Marine Sediments Using Green Cement Admixtures. Materials, 17(14), 3597. DOI: https://doi.org/10.3390/ma17143597

Yang, H., Feng, Q., Zhu, J., Liu, G., Dai, Y., Zhou, Q., ... & Zhang, Y. (2024). Towards sustainable futures: A review of sediment remediation and resource valorization techniques. Journal of Cleaner Production, 140529. DOI: https://doi.org/10.1016/j.jclepro.2023.140529

Yeo, R. J., Sng, A., Wang, C., Tao, L., Zhu, Q., & Bu, J. (2024). Strategies for heavy metals immobilization in municipal solid waste incineration bottom ash: a critical review. Reviews in Environmental Science and Bio/Technology, 23(2), 503-568. DOI: https://doi.org/10.1007/s11157-024-09694-3

Zhan, C. (2024). Microbial Decomposition and Soil Health: Mechanisms and Ecological Implications. Molecular Soil Biology, 15. DOI: https://doi.org/10.5376/msb.2024.15.0007

Zhang, G., Bai, J., Zhai, Y., Jia, J., Zhao, Q., Wang, W., & Hu, X. (2024). Microbial diversity and functions in saline soils: A review from a biogeochemical perspective. Journal of advanced research, 59, 129-140. DOI: https://doi.org/10.1016/j.jare.2023.06.015

Zhang, H., Liu, W., Xiong, Y., Li, G., Cui, J., Zhao, C., & Zhang, L. (2024). Effects of dissolved organic matter on distribution characteristics of heavy metals and their interactions with microorganisms in soil under long-term exogenous effects. Science of The Total Environment, 947, 174565. DOI: https://doi.org/10.1016/j.scitotenv.2024.174565

Zheng, X., Lin, H., Du, D., Li, G., Alam, O., Cheng, Z. & Li, J. (2024). Remediation of heavy metals polluted soil environment: A critical review on biological approaches. Ecotoxicology and Environmental Safety, 284, 116883. DOI: https://doi.org/10.1016/j.ecoenv.2024.116883

Zhou, B., Zhang, T. and Wang, F. (2023). Microbial-Based Heavy Metal Bioremediation: Toxicity and Eco-Friendly Approaches to Heavy Metal Decontamination. Appl. Sci. 2023, 13, 8439. https://doi.org/10.3390/app13148439 DOI: https://doi.org/10.3390/app13148439

Zhou, W., Li, M., & Achal, V. (2024). A comprehensive review on environmental and human health impacts of chemical pesticide usage. Emerging Contaminants, 100410. DOI: https://doi.org/10.1016/j.emcon.2024.100410

Zhu, Q., Ji, J., Tang, X., Wang, C., & Sun, H. (2023). Bioavailability assessment of heavy metals and organic pollutants in water and soil using DGT: A review. Applied Sciences, 13(17), 9760. DOI: https://doi.org/10.3390/app13179760

Published
2025-02-28
How to Cite
Gusau, A. M., & Fardami, A. Y. (2025). BIOREMEDIATION: A SUPERIOR ALTERNATIVE FOR REMEDIATING TANNERY EFFLUENT-CONTAMINATED SOIL. FUDMA JOURNAL OF SCIENCES, 9(2), 193 - 208. https://doi.org/10.33003/fjs-2025-0902-3159