ISOLATION, MOLECULAR CHARACTERIZATION AND APPLICATION OF PENICILLIUM CITRINUM AS BIOFERTILIZER POTENTIALS TO ENHANCE COWPEA GROWTH

Authors

  • Chinyerum G. Ikechi-Nwogu Department of plant science and biotechnology, university of Port Harcourt Choba Nigeria
  • S. C. Egelonu
  • U. M. Fabian

DOI:

https://doi.org/10.33003/fjs-2024-0806-3129

Keywords:

Fungi, Molecular techniques, Penicillium citrinum, Biofertilizer, Rhizosphere, Cowpea

Abstract

Chemical fertilizers are linked to a persistent decline in soil fertility, posing health hazards. This study investigated P. citrinum as a biofertilizer for cowpea (Vigna unguiculata growth. The test fungus was identified using molecular techniques from alligator pepper. Using a pot experimental method, an in-situ experiment was conducted on cowpea (TVX-3236) in the greenhouse to screen for the isolate's mycofertilizer potential. For six weeks, the cowpea was planted in six replicates in loamy soil. P. citrinum treatment was applied to the cowpea leaves in the following amounts 20 ml, 35 ml, 50 ml, 65 ml and 80 ml per bucket at a concentration of 0.08 spores per milliliter (mL) with no inoculation on the control. P. citrinum was applied on the second week and data was collected for agronomic traits (plant height, leaf number, leaf area, and root length) and leaf color. The impact of P. citrinum on cowpea height, leaf number, leaf area, and root length revealed that these agronomic parameters rose with increasing P. citrinum concentration. The cowpea in the pot that received the 80 ml P. citrinum inoculation performed the best, indicating that the plant benefited from this treatment. The experiment's results suggest that the isolate can be utilized as a mycofertilizer to promote cowpea growth. For that reason, this study offers some initial data for further investigation into the application of P. citrinum as a biofertilizer in agriculture. This fungus strain's capacity to stimulate plant development may aid in the preservation and revegetation of some vegetations.

References

Alori, E. T., Dare, M. O. and Babalola, O. O. (2017a). Microbial Inoculants for Soil Quality and Plant Fitness. In: Lichtfouse E (ed) Sustainable agriculture review. Springer, Berlin, pp181308

Ammar, E.E., Rady, H.A., Khattab, A.M., Amer, M. H., Mohamed, S. A., Elodamy, N. I., AL-Farga, A. and Aioub, A. A. A. (2023). A comprehensive overview of eco-friendly bio-fertilizers extracted from living organisms. Environ Sci Pollut Res 30, 113119113137. https://doi.org/10.1007/s11356-023-30260-x.

Anubrata, P., and Rajendra, D. (2014). Isolation, Characterization, Production of Biofertilizer and its Effect on Vegetable Plants with and Without Carrier Materials. International Journal of Current Research, 6:7986-7995.

Babalola O. O., (2010). Beneficial Bacterial of Agricultural Importance. Biotechnol Lett, 32:1559- 1570

Babu, A. G., Kim, S. W., Yadav, D. R., Hyum, U., Adhikari, M., & Lee, Y. S. (2015). Penicillium menonorum: A Novel Fungus to Promote Growth and Nutrient Management in Cucumber Plants. Mycobiology, 43(1), 4956. https://doi.org/10.5941/MYCO.2015.43.1.49

Bennett, J. W., & Klich, M. (2003). Mycotoxins. Clinical microbiology reviews, 16(3): 497516. https://doi.org/10.1128/CMR.16.3.497-516.2003

Bisht, N., & Singh Chauhan, P. (2021). Excessive and Disproportionate Use of Chemicals Cause Soil Contamination and Nutritional Stress. IntechOpen. https://doi.org/10.5772/intechopen.94593

David, O. M., Olawusi, A. C., Oluwole, O. A., Adeola, P. O., Odeyemi, A. T. (2023) Isolation, Molecular Characterization and Application of Aspergillus niger and Penicillium chrysogenum with Biofertilizer Potentials to Enhance Rice Growth. Tropical Journal of Natural Products Research. 7(4):2790-2795. http://www.doi.org/10.26538/tjnpr/v7i4.20

Frac, M, Jezierska-tys, S, Takashi, Y. (2015). Occurrence, detection, and molecular and metabolic characterization of heat-resistant fungi in soils and plants and their risk to human health. Adv. Agron., 132:161204.

Gasoni, L., & De Gurfinkel, B. S. (1997). The endophyte Cladorrhinum foecundissimum in cotton roots: phosphorus uptake and host growth. Mycological Research, 101(7), 867-870.

Gentili F, Jumpponen A (2006) Potential and possible uses of bacterial and fungal biofertilizers. In: Rai MK (ed) Handbook of microbial biofertilizers. Food Products Press, New York, pp 128

Hakim, S. S., Budi, S. W., & Turjaman, M. (2015). Phosphate solubilizing and antifungal activity of root Endophyte isolated from Shorea leprosula Miq. and Shoreal selanica (DC) Blume. Jurnal manajemen hutan tropika, 21(3), 138-147.

Hesse, S. E., Luethy, P. M., Beigel, J. H., and Zelazny, A. M. (2017). Penicillium citrinum: Opportunistic pathogen or idle bystander? A case analysis with demonstration of galactomannan cross-reactivity. Medical mycology case reports, 17: 810. https://doi.org/10.1016/j.mmcr.2017.05.003.

Itelima, J. U., Bang, W. J., Onyimba, I. A. And Egbere, O. J.(2018). A Review: Biofertilizer; A Key Player in Enhancing Soil Fertility and Crop Productivity. Direct Research Journal of Agriculture and Food Science, 6 (3), pp. 73-83, https://doi.org/10.26765/DRJAFS.2018.4815 Article Number: DRJA27094815

Keller, N. P., Turner, G., and Bennett, J. W. (2005). Fungal secondary metabolism - from biochemistry to genomics. Nature reviews. Microbiology, 3(12):937947. https://doi.org/10.1038/nrmicro1286

Khan, N., and Bano, A. (2016). Role of plant growth promoting rhizobacteria and Ag-nano particle in the bioremediation of heavy metals and maize growth under municipal wastewater irrigation. International Journal of Phytoremediation, 18(3), 211221. https://doi.org/10.1080/15226514.2015.1064352

Khan, S. A., Hamayun, M., Yoon, H., Kim, H. Y., Suh, S.J., Hwang, S.K., Kim, J.M., Lee, I)., Choo, Y.S., and Yoon, U.H. (2008). Plant Growth Promotion and Penicillium citrinum. BMC Microbiol.8:231. https://doi.org/10.1186/1471-2180-8-231

Kumar, M. S., Reddy, G. C., Phogat, M., & Korav, S. (2018). Role of bio-fertilizers towards sustainable agricultural development: A review. Journal of Pharmacognosy and Phytochemistry, 7(6), 1915-1921.Lone, R., Shuab, R., Khan, S., Ahmad, J., & Koul, K. K. (2017). Arbuscular mycorrhizal fungi for sustainable agriculture. Probiotics and plant health, 553-577.

Mittal V, Singh O, Nayyar H, Kaur J, Tewari R. (2008). Stimulatory effect of phosphate-solubilizing fungal strains (Aspergillus awamoriandPenicillium citrinum)on the yield of chickpea(Cicer arietinum L. cv. GPF2). Soil Biol. Biochem, 40:718-727.

Nmom. F.W, Elenwo E.N (2007). Effect of fungal contaminants on the germination of seeds and seedling infection of alligator pepper (Aframomum melegueta Schum). Acta Agronomica Nigeriana, 7(2 ):88-92

Saghai-Maroof, M. A, Soliman, K. M., Allard J. R. and Allard, R. W. L. (1984). Ribosomal DNA spacerlength polymorphisms in barley: Mendelian inheritance, chromosomal location and population dynamics. Proceedings of National Academy of Sci., 81(24):8014-8084.

Samson, R. A., Houbraken, J., Thrane, U., Frisvad J. C. & Andersen, B. (2010). Food and Indoor Fungi. CBS Laboratory Manual Series. Published by CBS-KNAW Fungal Biodiversity Centre Utrecht, The Netherlands.

Samson, R. A., Houbraken, J., Thrane, U., Frisvad J. C. & Andersen, B. (2010). Food and Indoor Fungi. CBS Laboratory Manual Series. Published by CBS-KNAW Fungal Biodiversity Centre Utrecht, The Netherlands.

Sanders E. R. (2012). Aseptic laboratory techniques: plating methods. Journal of visualized experiments: JoVE, (63), e3064. https://doi.org/10.3791/3064.

Santos, V. B., Araujo, S. F., Leite, L. F., Nunes, L. A. and Melo, J. W. (2012). Soil Microbial Biomass and Organic Matter Fractions During Transition from Conventional to Organic Farming Systems. Geoderma, 170:227231.

Seyedmousavi,, S., Guillot, J., Arn, P., Sybren de Hoog,G., Mouton,J. W., Melchers,W. J. G and Paul E. Verweij, (2015). Aspergillus and aspergilloses in wild and domestic animals: a global health concern with parallels to human disease, Medical Mycology, 53(8):765797. https://doi.org/10.1093/mmy/myv067

Vejan, P., Abdullah, R., Khandiran, T., Ismail, S. and Nasrulhaq, B. A. (2016). Role Of Plant Growth Promoting Rhizobacteria in Agricultural Sustainability-A Review. Molecules 21(5):573

Waqas, M., Khan, A. L., Hamayun, M., Shahzad, R., Kang, S. M., Kim, J. G., & Lee, I. J. (2015). Endophytic fungi promote plant growth and mitigate the adverse effects of stem rot: an example of Penicillium citrinum and Aspergillus terreus. Journal of Plant Interactions, 10(1), 280287. https://doi.org/10.1080/17429145.2015.1079743

Youssef, M. M. A. and Eissa, M. F. M. (2014). Biofertilizers and Their Role in Management of Plant Parasitic Nematodes. A review. E3 J Biotechnol. Pharm Res., 5:16.

Published

2024-12-31

How to Cite

Ikechi-Nwogu, C. G., Egelonu, S. C., & Fabian, U. M. (2024). ISOLATION, MOLECULAR CHARACTERIZATION AND APPLICATION OF PENICILLIUM CITRINUM AS BIOFERTILIZER POTENTIALS TO ENHANCE COWPEA GROWTH. FUDMA JOURNAL OF SCIENCES, 8(6), 568 - 580. https://doi.org/10.33003/fjs-2024-0806-3129