LEVERAGING MACHINE LEARNING MODELS FOR PREDICTING THE LIKELIHOOD OF POLYCYSTIC OVARIAN SYNDROME IN WOMEN OF REPRODUCTIVE AGE

  • Festus O. Oliha
  • K. M. Martins
  • Joseph O. Okhuoya
Keywords: Diagnosis, Machine Learning, Machine Learning Models, PCOS

Abstract

Conventional diagnostic approaches for polycystic ovarian syndrome (PCOS – a condition characterized by heterogeneity and the absence of a singular diagnostic test) are often invasive, time-consuming, and rely on varying criteria, resulting in inconsistencies in diagnosis. This study addresses the pressing challenge of improving the diagnosis of PCOS by exploring machine learning applications to bridge gaps in its prediction and diagnosis, offering a potential pathway toward greater accuracy and efficiency. The Cross-Industry Standard Process for Data Mining methodology was adopted for implementation using a comprehensive dataset from a public library – Kaggle. Results identified XGBoost algorithm as the most effective predictive model for diagnosing and predicting PCOS, achieving an accuracy of 98.7%. The results of the study indicated that the XGBoost algorithm is reliable with strong accuracy and dependability in diagnosing PCOS, establishing the PCOS Predictor as a valuable tool in clinical environments.  This study thus represents a significant step forward in transforming the diagnostic landscape of PCOS, combining technological advancements with clinical insights to enhance women's healthcare.

References

Bharati, S., Podder, P., and Mondal, M.R.H. (2020). Diagnosis of Polycystic Ovary Syndrome Using Machine Learning Algorithms. In the Proceedings of the 2020 IEEE Region 10 Symposium (TENSYMP). Dhaka, Bangladesh, June 14861489. DOI: https://doi.org/10.1109/TENSYMP50017.2020.9230932

Fahs, D., Salloum, D., Nasrallah, M., & Ghazeeri, G. (2023). Polycystic Ovary Syndrome: Pathophysiology and Controversies in Diagnosis. Diagnostics, 13(9), 1559. https://doi.org/10.3390/diagnostics13091559 DOI: https://doi.org/10.3390/diagnostics13091559

Hatoum, S., Amiri, M., Buyalos, R. P., Sheidaei, A. & Azziz, R. (2024). Prevalence of Polycystic Ovary Syndrome in Adolescent Girls by World Health Organization Region. Journal of the Endocrine Society, 8(1), 867-894. https://doi.org/10.1210/jendso/bvae163.1655 DOI: https://doi.org/10.1210/jendso/bvae163.1742

Keyif., B., Yavuzcan, A., Kurdoglu, M. (2023). Diagnosing Polycystic Ovary Syndrome Using Triglyceride-Related Indices: Is it Possible Without Rotterdam Criteria? Crescent Journal of Medical and Biological Sciences, 10(4), 151152. https://doi.org/10.34172/cjmb.2023.4007 DOI: https://doi.org/10.34172/cjmb.2023.4007

Khanna, V.V., Chadaga, K., Sampathila, N., Prabhu, S., Bhandage, V. & Hegde, G.K. (2023). A Distinctive Explainable Machine Learning Framework for Detection of Polycystic Ovary Syndrome. Appl. Syst. Innov. 6(1), 32-39. DOI: https://doi.org/10.3390/asi6020032

Kumar, A., Singh, J. and Khan, A. A. (2024). A Comprehensive Machine Learning Framework with Particle Swarm Optimization for Improved Polycystic Ovary Syndrome (PCOS) Diagnosis. Engineering Research Express, 6(1), 1-23. https://doi.org/10.1088/2631-8695/ad76f9 DOI: https://doi.org/10.1088/2631-8695/ad76f9

Lathifah, A., Arham, Z., Hasanati, N., Zulfiandri A. & Nurmiati, E. (2023). Cross-Industry Standard Process for Data Mining (CRISP-DM) for Discovering Association Rules in Graduate Tracer Study Data of Islamic Higher Education Institution. 11th International Conference on Cyber and IT Service Management (CITSM), Makassar, Indonesia, pp.1-6. https://doi.org/10.1109/CITSM60085.2023.10455691 DOI: https://doi.org/10.1109/CITSM60085.2023.10455691

Lazareva L.M. (2023). The Prevalence of Polycystic Ovarian Syndrome in the Population of Women of Reproductive Age Using the Rotterdam 2003 criteria (Britory Review). Acta Biomedica Scientifica, 8 (4), 59-67. https://doi.org/10.29413/ABS.2023-8.4.7 DOI: https://doi.org/10.29413/ABS.2023-8.4.7

Mohamed, S. M., Nivya, P. S., Devika, C. S., Malayanur, S R., Poornima, N., et al. (2023). A Review of Hyperandrogenism State in Polycystic Ovarian Syndrome. International journal of Reproduction, Contraception, Obstetrics and Gynecology. https://doi.org/10.18203/2320-1770.ijrcog20233666 DOI: https://doi.org/10.18203/2320-1770.ijrcog20233666

Neven, A. C. H., Forslund, M., Ranashinha, S., et al. (2024). Prevalence and Accurate Diagnosis of Polycystic Ovary Syndrome in Adolescents Across World Regions: A Systematic Review and Meta-Analysis. European Journal of Endocrinology, 191(4), S15S27. https://doi.org/10.1093/ejendo/lvae125 DOI: https://doi.org/10.1093/ejendo/lvae125

Oliha, F. O and Omobude, E. K. (2023). Aggregating Covid-19 Data on Vaccination and Mortality Progression for Dashboard Visualization: A Recap. Nigerian Journal of Science and Environment, 21(2), 638 651.

Oliha, F. O. and E. I. Obayagbona, (2023). Dashboarding Vaccine and Routine Immunization Data Services for Selected Healthcare Centers: A User-Centric Evaluation. Nigerian Journal of Science and Environment, 21(2), 500-513.

Poojitha G, Talla V. (2024). Diagnosis and Treatment of Polycystic Ovarian Syndrome: An Update. Pharm Pharmacol Int J, 12(5):185-189. https://doi.org/10.15406/ppij.2024.12.00450 DOI: https://doi.org/10.15406/ppij.2024.12.00450

Rani, R., Priyanka, R. Y., Bajal, N., Mandal, B. S., Kumar, A. P. (2024). Polycystic Ovary Syndrome (PCOS): from Diagnosis to Treatment. International Journal of Environment Agriculture and Biotechnology, 9(4), 031-037. https://doi.org/10.22161/ijeab.94.5

Rani, R., Yadav, P., Bajal, N., Mandal, B S., Kumar, A. P. (2024). Polycystic Ovary Syndrome (PCOS): from Diagnosis to Treatment. International Journal of Environment Agriculture and Biotechnology, 9(4), 031-037. https://doi.org/10.22161/ijeab.94.5 DOI: https://doi.org/10.22161/ijeab.94.5

Siddiqui, S., Mateen, S., Ahmad, R., Moin, S. (2022). A Brief Insight into the Etiology, Genetics, and Immunology of Polycystic Ovarian Syndrome (PCOS). J. Assist. Reprod. Genet, 39, 24392473. DOI: https://doi.org/10.1007/s10815-022-02625-7

Taieb, A., & Feryel, A. (2024). Deciphering the Role of Androgen in the Dermatologic Manifestations of Polycystic Ovary Syndrome Patients: A State-of-the-Art Review. Diagnostics, 14(22), 2578. https://doi.org/10.3390/diagnostics14222578 DOI: https://doi.org/10.3390/diagnostics14222578

Thakre V., Vedpathak, S., Thakre, K., Sonawani, S. (2020). PCOcare: PCOS Detection and Prediction Using Machine Learning Algorithms. Biosci. Biotechnol. Res. Commun. 13(2), 240 244. DOI: https://doi.org/10.21786/bbrc/13.14/56

Thorat, S., Ranjan, N., Gangal, V., Jogdand, T., Kulat, S. & Borde, S. P. R. (2024). Identification of Polycystic Ovarian Syndrome through Clinical Metrics and Ultrasonographic Imaging Analysis. In 2024 IEEE International Conference on Contemporary Computing and Communications (InC4), Bangalore, India, pp.1-6. https://doi.org/10.1109/InC460750.2024.10649348 DOI: https://doi.org/10.1109/InC460750.2024.10649348

Tiwari, S., Kane, L., Koundal, D., Jain, A., Alhudhaif, A., Polat, K., Zaguia, A., Alenezi, F., & Althubiti, S.A. (2022). SPOSDS: A Smart Polycystic Ovary Syndrome Diagnostic System using Machine Learning. Expert Syst. Appl. 203, 592-603. DOI: https://doi.org/10.1016/j.eswa.2022.117592

Unfer, V., Kandaraki, E., Pkhaladze, L., Roseff, S., Vazquez-Levin, M. H., Lagan, A.S., et al. (2024). When one size does not fit all: Reconsidering PCOS Etiology, Diagnosis, Clinical Subgroups, and Subgroup-Specific Treatments. Endocrine and Metabolic Science, 14, 345-353. https://doi.org/10.1016/j.endmts.2024.100159 DOI: https://doi.org/10.1016/j.endmts.2024.100159

Vinothini, S., Vaishnavi S., and Mythili (2024). Polycystic Ovary Syndrome (PCOS) Disease Prediction Using Machine Learning. In the IEEE International Conference on Contemporary Computing and Communications (InC4), Bangalore, India, pp.1-9. https://doi.org/10.1109/InC460750.2024.10649123 DOI: https://doi.org/10.1109/InC460750.2024.10649123

Published
2025-01-31
How to Cite
Oliha, F. O., Martins, K. M., & Okhuoya, J. O. (2025). LEVERAGING MACHINE LEARNING MODELS FOR PREDICTING THE LIKELIHOOD OF POLYCYSTIC OVARIAN SYNDROME IN WOMEN OF REPRODUCTIVE AGE. FUDMA JOURNAL OF SCIENCES, 9(1), 323 - 332. https://doi.org/10.33003/fjs-2025-0901-3088