ESTIMATION OF THE RELATIONSHIP BETWEEN SOLAR RADIATION, RELATIVE HUMIDITY, AND TEMPERATURE IN UGWOLAWO USING LINEAR REGRESSION ANALYSIS

Authors

  • Alexander O. Ohiani
  • S. A. Ayodele
  • F. Egbunu
  • A. R. Ibrahim
  • I. I. Oshatuyi
  • J. O. Adeyemi

DOI:

https://doi.org/10.33003/fjs-2024-0806-3086

Keywords:

Solar radiation, Relative humidity, Temperature, Simple regression method

Abstract

The radiation of the sun has a critical climatic influence on solar energy generation, ecology and crop production. Consequently, it is important to know how solar radiation interacts with other climate variables such as temperature and relative humidity towards developing better designs of solar arrays and mitigate the impact of climate variability. In this study, we have explored the impacts of relative humidity and temperature on the sun’s radiation. The statistical data for this work was collected from the trustworthy National Aeronautics and Space Administration (NASA) power archive. Shortwave solar radiation, relative humidity and temperature readings from January 1991 to December 2020 were retrieved and evaluated to establish average values.  The results showed that the annual relative humidity ranged from 77.25% to 83.94%, while the annual temperature fluctuated between 24.86°C and 26.58°C, and the radiation from sun varied from 4.72 to 5.40 kW-hr/m². Both graphical and statistical analyses using a simple regression model indicated a slightly direct correlation between solar radiation and relative humidity while data regarding temperatures and solar radiation during the analysis period demonstrated an inverse relationship.

References

Abdulrahman, S. A., Ekemhe, E. A., & Ubi, P. A. (2015). Mechanical properties of Luffa Cylindrica reinforced Bio-Composite. International Journal of Current Research, 7(4), 14460–14464.

Adah, P. U., Nuhu, A. A., Salawu, A. A., Hassan, A. B., & Ubi, P. A. (2024). Characterization of periwinkle shell ash reinforced polymer composite for automotive application. FUDMA Journal of Sciences, 8(1), 83–92. https://doi.org/10.33003/fjs-2024-0801-2158

Ajao, K. S., Abdulrahman, A. S., & Abdulkareem, A. S. (2024). Mechanical properties and microstructure of epoxy, horn, alkaline treated/untreated coconut shell particulates hybrid composite. FUDMA Journal of Sciences, 8(3), 214–221. https://doi.org/10.33003/fjs-2024-0803-2464

Akinwekomi, A. D., Oladele, I. O., Onuh, L. N., Essien, E. E., Agbeboh, N. I., & Idris, M. O. (2024). Development and Characterization of Hybrid Particulate-fiber Reinforced Epoxy Composites. Applied Science and Engineering Progress. https://doi.org/10.14416/j.asep.2024.06.001

Anosike-Francis, E. N., Ubi, P. A., Obianyo, I. I., Kalu-Uka, G. M., Bello, A., Ofem, M. I., Olorunnisola, A. O., & Onwualu, A. P. (2022). Mechanical and Thermomechanical Properties of Clay-Cowpea (Vigna Unguiculata Walp.) Husks Polyester Bio-Composite for Building Applications. Applied Sciences, 12(2), 713. https://doi.org/10.3390/app12020713

Chandran, A. J., Rangappa, S. M., Suyambulingam, I., & Siengchin, S. (2024). Waste chicken feather biofiller reinforced bioepoxy resin based biocomposites — A waste to wealth experimental approach. International Journal of Biological Macromolecules, 261, 129708. https://doi.org/10.1016/j.ijbiomac.2024.129708

Dakarapu, S. R., Karri, S. R., & Ampolu, L. S. P. (2023). Mechanical and water absorption properties of polymer composites reinforced with animal bone powder. Journal of Physics: Conference Series, 2604(1), 012004. https://doi.org/10.1088/1742-6596/2604/1/012004

Darmawan, S., Sofyan, K., Pari, G., & Sugiyanto, K. (2010). Effect of Activated Charcoal Addition on Formaldehyde Emission of Medium Density Fiberboard. Indonesian Journal of Forestry Research, 7(2), 100–111. https://doi.org/10.20886/ijfr.2010.7.2.100-111

Eichhorn, S. J., Baillie, C. A., Zafeiropoulos, N., Mwaikambo, L. Y., Ansell, M. P., Dufresne, A., Entwistle, K. M., Herrera-Franco, P. J., Escamilla, G. C., Groom, L., Hughes, M., Hill, C., Rials, T. G., & Wild, P. M. (2001). Review: Current international research into cellulosic fibres and composites. Journal of Materials Science, 36(9), 2107–2131. https://doi.org/10.1023/A:1017512029696

Hussein, A. A., Sultan, A. A., & Matoq, Q. A. (2011). Mechanical behaviour of Low Density Polyethylene / Shrimp Shells Composite. Journal of Basrah Researches (Sciences), 37(3A), 5–11.

Jayabal, S., Sathiyamurthy, S., Loganathan, K. T., & Kalyanasundaram, S. (2012). Effect of soaking time and concentration of NaOH solution on mechanical properties of coir–polyester composites. Bulletin of Materials Science, 35(4), 567–574. https://doi.org/10.1007/s12034-012-0334-2

Kalia, S., Dufresne, A., Cherian, B. M., Kaith, B. S., Avérous, L., Njuguna, J., & Nassiopoulos, E. (2011). Cellulose-Based Bio- and Nanocomposites: A Review. International Journal of Polymer Science, 2011, 1–35. https://doi.org/10.1155/2011/837875

Kumar, S., Prasad, L., & Pate, V. K. (2017). Effect of hybridization of glass/kevlar fiber on mechanical properties of bast fiber reinforced polymer composite: A Review. American Journal of Polymer Science & Engineering, 5(1), 1–11.

Norrrahim, M. N. F., Nurazzi, N. M., Knight, V. F., Farid, M. A. A., Andou, Y., Jenol, M. A., Naveen, J., Asyraf, M. R. M., & Rani, M. S. A. (2024). Cow bone as reinforcement fillers in polymer composites for structural applications. In Polymer Composites Derived from Animal Sources (pp. 277–293). Elsevier. https://doi.org/10.1016/B978-0-443-22414-0.00015-6

Ockerman, H. W., & Hansen, C. L. (1999). Animal By-Product Processing & Utilization. CRC Press. https://doi.org/10.1201/9781482293920

Oladele, I. O., Omotoyimbo, J. A., & Ayemidejor, S. H. (2014). Mechanical Properties of Chicken Feather and Cow Hair Fibre Reinforced High Density Polyethylene Composites. International Journal of Science and Technology , 3(1).

Onitiri, M. A., & Ubi, P. A. (2021). Failure modes in particle filled plastic matrix composites. Journal of Engineering, Science, and Technology, 5(1), 79–96.

Plastics Europe. (2022, October). Plastics – the Facts 2022. Plastic Europe. https://plasticseurope.org/wp-content/uploads/2022/10/PE-PLASTICS-THE-FACTS_V7-Tue_19-10-1.pdf

Poole, A. J., Church, J. S., & Huson, M. G. (2009). Environmentally Sustainable Fibers from Regenerated Protein. Biomacromolecules, 10(1), 1–8. https://doi.org/10.1021/bm8010648

Rachtanapun, P. (2015). Effect of activated carbon on physical and mechanical properties of composites from eucalyptus particles [Chiang Mai University]. https://kukr.lib.ku.ac.th/kukr_es/index.php?/BKN/search_detail/dowload_digital_file/11604/101 253

Salleh, Z., Islam, M. M., & Ku, H. (2013). Tensile behaviours of activated carbon coconut shell filled epoxy composites. In M. M. Noor, M. M. Rahman, & J. Ismai (Eds.), 3rd Malaysian Postgraduate Conference (pp. 22–27).

Sapuan, S. M., Siddiqui, V. U., bin Zulkiflee, U. A., bin Ayob, A. M., Fadzlin, M., & bin Md Fadzli, A. (2024). Chicken feather–reinforced polymer composites. In Polymer Composites Derived from Animal Sources (pp. 89–102). Elsevier. https://doi.org/10.1016/B978-0-443-22414-0.00005-3

Schmidt, W. F., & Jayasundera, S. (2004). Microcrystalline Avian Keratin Protein Fibers. In Natural Fibers, Plastics and Composites (pp. 51–66). Springer US. https://doi.org/10.1007/978-1-4419-9050-1_4

Talabi, S. I., Oladipo, W., Odetoyinbo, I., Phadatare, A., Elyas, S., Vaidya, U., & Hassen, A. A. (2024). Epoxy resin reinforced with carbonized chicken feathers: An innovative composite material with sustainable potentials. Journal of Composite Materials. https://doi.org/10.1177/00219983241276933

Ubi, P. A., & Abdulrahman, A. S. (2015). Effect of sodium hydroxide treatment on the mechanical properties of crushed and uncrushed luffa cylindrica fibre reinforced rLDPE composites. International Journal of Chemical, Nuclear, Materials and Metallurgical Engineering, 9(1), 203–208.

Ubi, P. A., Ademoh, N. A., Anosike-Francis, E. N., Salawu, A. A., Adeleke, A. A., Okoro, U. G., Abdullahi, A. A., & Ngolemasango, F. (2024). Rice husk silica blended fillers for engine mount application. Scientific Reports, 14(1), 3055. https://doi.org/10.1038/s41598-024-53742-5

Ubi, P. A., Anosike-Francis, E. N., Agbonko, E. B., Omoyi, C. O., Nwigwe, E. E., Agba, A. I., Itam, D. H., & Rowland Ana, R. (2023). Rice Husk-Derived Silica: A Sustainable Alternative to Traditional Fillers in Elastomeric Composites. 2023 2nd International Conference on Multidisciplinary Engineering and Applied Science (ICMEAS), 1–7. https://doi.org/10.1109/ICMEAS58693.2023.10429842

Yawas, D. S., Aku, S. Y., & Amaren, S. G. (2016). Morphology and properties of periwinkle shell asbestos-free brake pad. Journal of King Saud University - Engineering Sciences, 28(1), 103–109. https://doi.org/10.1016/j.jksues.2013.11.002

Published

2024-12-31

How to Cite

Ohiani, A. O., Ayodele, S. A., Egbunu, F., Ibrahim, A. R., Oshatuyi, I. I., & Adeyemi, J. O. (2024). ESTIMATION OF THE RELATIONSHIP BETWEEN SOLAR RADIATION, RELATIVE HUMIDITY, AND TEMPERATURE IN UGWOLAWO USING LINEAR REGRESSION ANALYSIS. FUDMA JOURNAL OF SCIENCES, 8(6), 481 - 484. https://doi.org/10.33003/fjs-2024-0806-3086