BIOSURFACTANT PROPERTIES AND ITS APPLICATION IN CHROMIUM REMOVAL: A REVIEW

  • Usman Ali Bukar University of Maiduguri
  • Abdullahi Hassan Kawo Department of Microbiology, Bayero University Kano, Nigeria
  • Sani Yahaya Department of Microbiology, Bayero University Kano, Nigeria
  • Sani Yahaya Department of Microbiology, Bayero University Kano, Nigeria
  • Abdullahi Balarabe Inuwa Department of Microbiology, Bayero University Kano, Nigeria
  • Aminu Yusuf Fardami Department of Microbiology, Usmanu Danfodiyo University Sokoto, Nigeria
Keywords: Biosurfactant, properties, chromium-reduction, chromium-removal

Abstract

Chromium contamination primarily originates from anthropogenic activities such as industrial discharges, mining operations, and the improper disposal of chromium-containing products, leading to its infiltration into soil and groundwater. The persistence of chromium in the environment poses severe ecological and health risks, including bioaccumulation in aquatic organisms and adverse effects on plant growth and soil microbes. Human exposure to chromium through contaminated water or occupational settings is linked to respiratory problems, skin disorders, and heightened cancer risk. Addressing these challenges necessitates sustainable remediation approaches, highlighting the potential of biosurfactants as eco-friendly alternatives to conventional methods. This review was aimed to provide an overview on different properties of biosurfactants and its application in chromium removal, covering key aspects from introduction to future perspectives. Biosurfactants as microbial-derived surface-active agents, exhibit properties that make them highly effective in reducing chromium contamination. Their biodegradability, low toxicity, and renewable production ensure minimal environmental impact. Moreover, their amphiphilic nature enhances chromium bioavailability, facilitating microbial uptake and reduction. Certain biosurfactants chelate metal ions, preventing chromium migration and secondary contamination, while their synergistic interactions with microorganisms improve remediation efficiency. By supporting the transformation of toxic Cr (VI) into less harmful Cr (III) and promoting precipitation of insoluble compounds, biosurfactants offer a sustainable and versatile solution for mitigating chromium pollution.

References

Akbar, W. A., Rahim, H. U., Irfan, M., Sehrish, A. K., & Mudassir, M. (2024). Assessment of heavy metal distribution and bioaccumulation in soil and plants near coal mining areas: implications for environmental pollution and health risks. Environmental Monitoring and Assessment, 196(1), 97. DOI: https://doi.org/10.1007/s10661-023-12258-7

Allamin, I. A., Ismail, G., Ismail, H. Y., Bukar, U., Shettima, H., & Faruk, A. U. (2020). Distribution of Hydrocarbon Utilizing Bacterial Population Receiving Hydrocarbon Micro-seepage in Hydrocarbon Exploration Sites of Kukawa North-East Nigeria. Journal of Environmental Bioremediation and Toxicology, 3(2), 17-20. DOI: https://doi.org/10.54987/jebat.v3i2.546

Ao, M., Chen, X., Deng, T., Sun, S., Tang, Y., Morel, J. L., ... & Wang, S. (2022). Chromium biogeochemical behaviour in soil-plant systems and remediation strategies: A critical review. Journal of hazardous materials, 424, 127233. DOI: https://doi.org/10.1016/j.jhazmat.2021.127233

Ara, I. (2007). Conversion of Cr (VI) in water and soil using rhamnolipid (Doctoral dissertation, Concordia University).

Awogbami, S. O., Ogunyemi, O., Adebayo, P. A., & Raimi, M. O. (2024). Protecting the Health of Black Communities: Assessing the Impact of Environmental Hazards from Gold Mining Activities on Health Outcomes among Residents of Osun State, Nigeria. JMIR Preprints, 15(09), 2024. DOI: https://doi.org/10.2196/preprints.66508

Ayejoto, D. A., & Egbueri, J. C. (2024). Human health risk assessment of nitrate and heavy metals in urban groundwater in Southeast Nigeria. Ecological Frontiers, 44(1), 60-72. DOI: https://doi.org/10.1016/j.chnaes.2023.06.008

Babaniyi, B. R., Olamide, I. G., Fagbamigbe, D. E., Adebomi, J. I., & Areo, I. F. (2025). Environmental Pollution and the Entrance of Toxic Elements into the Food Chain. In Phytoremediation in Food Safety (pp. 109-124). DOI: https://doi.org/10.1201/9781032683751-11

Baig, A., Sial, S. A., Qasim, M., Ghaffar, A., Ullah, Q., Haider, S., & Ather, N. (2024). Harmful Health Impacts of Heavy Metals and Behavioral Changes in Humans. Indonesian Journal of Agriculture and Environmental Analytics, 3(2), 77-90. DOI: https://doi.org/10.55927/ijaea.v3i2.10431

Bakshi, A., & Panigrahi, A. K. (2018). A comprehensive review on chromium induced alterations in fresh water fishes. Toxicology reports, 5, 440-447. DOI: https://doi.org/10.1016/j.toxrep.2018.03.007

Bibri, S. E., Krogstie, J., Kaboli, A., & Alahi, A. (2024). Smarter eco-cities and their leading-edge artificial intelligence of things solutions for environmental sustainability: A comprehensive systematic review. Environmental Science and Ecotechnology, 19, 100330. DOI: https://doi.org/10.1016/j.ese.2023.100330

Buljan, J., & Rajamani, S. G. (2024). Challenges in the Treatment of Tannery Effluents. In Emerging Trends in Leather Science and Technology (pp. 131-175). Singapore: Springer Nature Singapore. DOI: https://doi.org/10.1007/978-981-99-9754-1_5

Changotra, R., Rajput, H., Liu, B., & Murray, G. (2024). Occurrence, fate, and potential impacts of wood preservatives in the environment: Challenges and environmentally friendly solutions. Chemosphere, 141291. DOI: https://doi.org/10.1016/j.chemosphere.2024.141291

Come, B. (2019). Biophysical and toxicological properties of rhamnolipids as potential agents in bioremediation processes.

Dalbanjan, N. P., Eelager, M. P., & Narasagoudr, S. S. (2024). Microbial protein sources: A comprehensive review on the potential usage of fungi and cyanobacteria in sustainable food systems. Food and Humanity, 100366. DOI: https://doi.org/10.1016/j.foohum.2024.100366

Das, N., Mandal, S. K., Das, D., Madhavan, J., & Selvi, A. (2021). Recent Updates on the Role of Biosurfactants forRemediation of Various Pollutants. In Rhizomicrobiome Dynamics in Bioremediation (pp. 180-197). CRC Press. DOI: https://doi.org/10.1201/9780367821593-9

David Raj, A., Padmapriya, R., & David Raj, A. (2024). Climate Crisis Impact on Ecosystem Services and Human Well-Being. In Climate Crisis, Social Responses and Sustainability: Socio-ecological Study on Global Perspectives (pp. 3-36). Cham: Springer Nature Switzerland. DOI: https://doi.org/10.1007/978-3-031-58261-5_1

Dehkordi, M. M., Nodeh, Z. P., Dehkordi, K. S., Khorjestan, R. R., & Ghaffarzadeh, M. (2024). Soil, air, and water pollution from mining and industrial activities: Sources of pollution, environmental impacts, and prevention and control methods. Results in Engineering, 102729. DOI: https://doi.org/10.1016/j.rineng.2024.102729

Dini, S., Bekhit, A. E. D. A., Roohinejad, S., Vale, J. M., & Agyei, D. (2024). The Physicochemical and Functional Properties of Biosurfactants: A Review. Molecules, 29(11), 2544. DOI: https://doi.org/10.3390/molecules29112544

Domingues , M., P., Almeida, A., Serafim Leal, L., Gomes, N. C., & Cunha, . (2017). Bacterial production of biosurfactants under microaerobic and anaerobic conditions. Reviews in Environmental Science and Bio/Technology, 16, 239-272. DOI: https://doi.org/10.1007/s11157-017-9429-y

Dubey, P., Farooqui, A., Patel, A., & Srivastava, P. K. (2024). Microbial innovations in chromium remediation: mechanistic insights and diverse applications. World Journal of Microbiology and Biotechnology, 40(5), 151. DOI: https://doi.org/10.1007/s11274-024-03936-w

Fardami, A. Y., & Abdullahi, S. (2024). Bacterial Bisorption as an Approach for the Bioremediation of Chromium Contaminated Soils: An Overview. UMYU Journal of Microbiology Research (UJMR), 374-387. DOI: https://doi.org/10.47430/ujmr.2493.045

Fardami, A. Y., Ibrahim, U. B., Sabitu, M., Lawal, A., Adamu, M. A., Aliyu, Lawal I., Dalhatu, A.I., Zainab, M, S, & Farouq, A. A. (2023). Mechanisms of Bacterial Resistance to Heavy Metals: A Mini Review. UMYU Scientifica, 2(1), 76-87. DOI: https://doi.org/10.56919/usci.2123.010

Fardami, A. Y., Kawo, A. H., Yahaya, S., Lawal, I., Abubakar, A. S., & Maiyadi, K. A. (2022a). A review on biosurfactant properties, production and producing microorganisms. Journal of Biochemistry, Microbiology and Biotechnology, 10(1), 5-12. DOI: https://doi.org/10.54987/jobimb.v10i1.656

Fardami, A. Y., Kawo, A. H., Yahaya, S., Riskuwa-Shehu, M. L., Lawal, I., & Ismail, H. Y. (2022b). Isolation and screening of biosurfactant-producing bacteria from hydrocarbon-contaminated soil in Kano Metropolis, Nigeria. Journal of Biochemistry, Microbiology and Biotechnology, 10(1), 52-57. DOI: https://doi.org/10.54987/jobimb.v10i1.664

Fardami A.Y., Kawo A.H., Yahaya S., Ahmad S.A. and Ibrahim, U,B. (2022c).Stability and Optimization of Biosurfactant Production by Enterobacter cloacae AYF1. Arid Zone Journal of Basic and Applied Research, 1 (1), 157-167. DOI: https://doi.org/10.55639/607fed

Fardami, A. Y., Kawo, A. H., Yahaya, S., Riskuwa-Shehu, M. L., Ahmad, S. A., Lawal, I., Aliyu, A., Abubakar, A. S., Ibrahim, U. B. & Ismail, H. Y. (2022d). Rhamnolipid Biosurfactant Produced by Enterobacter cloacae AYF1 Strain Enhanced the Remediation of Heavy Metal Contaminated Water. https://doi.org/10.21203/rs.3.rs-2279770/v1

Fardami, A. Y. (2021). Screening and characterization of biosurfactant produced by bacteria isolated from hydrocarbon-contaminated soil and its application in heavy metal removal and biocorrosion mitigation. (Doctoral Thesis Bayero University Kano, Kano State, Nigeria).

Fulke, A. B., Ratanpal, S., & Sonker, S. (2024). Understanding heavy metal toxicity: Implications on human health, marine ecosystems and bioremediation strategies. Marine Pollution Bulletin, 206, 116707. DOI: https://doi.org/10.1016/j.marpolbul.2024.116707

Gayathiri, E., Prakash, P., Karmegam, N., Varjani, S., Awasthi, M. K., & Ravindran, B. (2022). Biosurfactants: potential and eco-friendly material for sustainable agriculture and environmental safetya review. Agronomy, 12(3), 662. DOI: https://doi.org/10.3390/agronomy12030662

Gielen, D., Boshell, F., Saygin, D., Bazilian, M. D., Wagner, N., & Gorini, R. (2019). The role of renewable energy in the global energy transformation. Energy strategy reviews, 24, 38-50. DOI: https://doi.org/10.1016/j.esr.2019.01.006

Grace Pavithra, K., Jaikumar, V., Kumar, P. S., & SundarRajan, P. (2019). A review on cleaner strategies for chromium industrial wastewater: present research and future perspective. Journal of Cleaner Production, 228, 580-593. DOI: https://doi.org/10.1016/j.jclepro.2019.04.117

Gupta, A., Khan, F., Pandey, P., Tripathi, M., & Pathak, N. (2024). A comprehensive review on the role of biosurfactants in remediation of heavy metals from contaminated environment. Bioremediation Journal, 1-27. DOI: https://doi.org/10.1080/10889868.2024.2427076

Gusau, A. M., Rabah, A. B., Fardami, A. Y., & Magami, I. M. (2024). Molecular Identification of Potent Chromium Reducing Bacteria Isolated from Hydrocarbon-Contaminated Soil within Sokoto Metropolis. UMYU Journal of Microbiology Research (UJMR), 365-373. DOI: https://doi.org/10.47430/ujmr.2493.044

Hogan, D. E., Tian, F., Malm, S. W., Olivares, C., Pacheco, R. P., Simonich, M. T., ... & Maier, R. M. (2019). Biodegradability and toxicity of monorhamnolipid biosurfactant diastereomers. Journal of hazardous materials, 364, 600-607. DOI: https://doi.org/10.1016/j.jhazmat.2018.10.050

Hu, T., Ye, C., Ning, Z., Liu, T., & Mu, W. (2024). Effect of Toxicity of Chromium (VI) Stressors Alone and Combined to High Temperature on the Histopathological, Antioxidation, Immunity, and Energy Metabolism in Fish Phoxinus lagowskii. Fishes, 9(5), 168. DOI: https://doi.org/10.3390/fishes9050168

Hussain, S., Akhter, R., & Maktedar, S. S. (2024). Advancements in sustainable food packaging: from eco-friendly materials to innovative technologies. Sustainable Food Technology, 2(5), 1297-1364. DOI: https://doi.org/10.1039/D4FB00084F

Ibrahim, U. B., Yusuf, I., Saleh, A., Fardami, A. Y., Yahaya, H. I., Jodi, A. M., ... & Yahaya, S. (2023). Biomass Assessment and Optimization of Alcaligenes faecalis Isolated from some Nigerian Mining Sites for Heavy Metal Uptake Using Response Surface Methodology Model. UMYU Scientifica, 2(3), 128-141. DOI: https://doi.org/10.56919/usci.2323.019

Igelle, E. I., Phil-Eze, P. O., Obeta, M. C., Abdelrahman, K., Andr, P., Ekwok, S. E., & Eldosuoky, A. M. (2024). Predicting heavy metal transport in groundwater around Lemna dumpsite: implications for residence utilizing borehole water in Cross River State, Nigeria. Applied Water Science, 14(8), 174. DOI: https://doi.org/10.1007/s13201-024-02230-2

Ilango, V., & Sridharan, K. (2025). Bioaugmentation for heavy metal treatment present in wastewater. In Biotechnologies for Wastewater Treatment and Resource Recovery (pp. 227-240). Elsevier. DOI: https://doi.org/10.1016/B978-0-443-27376-6.00017-7

Jain, G. (2022). Studies of nanoparticles-bacteria interactions to develop potential bio-based reagents for separation of fine mineral particles.

Johnson, P., Trybala, A., Starov, V., & Pinfield, V. J. (2021). Effect of synthetic surfactants on the environment and the potential for substitution by biosurfactants. Advances in colloid and interface science, 288, 102340. DOI: https://doi.org/10.1016/j.cis.2020.102340

Johnston, J. E., Lim, E., & Roh, H. (2019). Impact of upstream oil extraction and environmental public health: A review of the evidence. Science of the Total Environment, 657, 187-199. DOI: https://doi.org/10.1016/j.scitotenv.2018.11.483

Kaczorek, E., Pacholak, A., Zdarta, A., & Smuek, W. (2018). The impact of biosurfactants on microbial cell properties leading to hydrocarbon bioavailability increase. Colloids and Interfaces, 2(3), 35. DOI: https://doi.org/10.3390/colloids2030035

Kalsoom, A., & Batool, R. (2020). Biological and nonbiological approaches for treatment of Cr (VI) in Tannery Effluent. Emerging Eco-friendly Green Technologies for Wastewater Treatment, 147-170. DOI: https://doi.org/10.1007/978-981-15-1390-9_7

Kapoor, R. T., Mfarrej, M. F. B., Alam, P., Rinklebe, J., & Ahmad, P. (2022). Accumulation of chromium in plants and its repercussion in animals and humans. Environmental Pollution, 301, 119044. DOI: https://doi.org/10.1016/j.envpol.2022.119044

Karnwal, A., Martolia, S., Dohroo, A., Al-Tawaha, A. R. M. S., & Malik, T. (2024). Exploring bioremediation strategies for heavy metals and POPs pollution: the role of microbes, plants, and nanotechnology. Frontiers in Environmental Science, 12, 1397850. DOI: https://doi.org/10.3389/fenvs.2024.1397850

Khorram-Manesh, A., Burkle Jr, F. M., & Goniewicz, K. (2024). Pandemics: past, present, and future: multitasking challenges in need of cross-disciplinary, transdisciplinary, and multidisciplinary collaborative solutions. Osong Public Health and Research Perspectives, 15(4), 267. DOI: https://doi.org/10.24171/j.phrp.2023.0372

Kubicki, S., Bollinger, A., Katzke, N., Jaeger, K. E., Loeschcke, A., & Thies, S. (2019). Marine biosurfactants: biosynthesis, structural diversity and biotechnological applications. Marine drugs, 17(7), 408. DOI: https://doi.org/10.3390/md17070408

Lawal, I., Fardami, A. Y., Bello, S., Habibu, A., & Sanusi, Z. M. (2022). The Potentials of Biosurfactants as Anti-Inflammatory and Anti-Viral Agents against Covid-19: A Mini Review. UMYU Scientifica, 1(2), 188-194. DOI: https://doi.org/10.56919/usci.1222.019

Liang, J., Huang, X., Yan, J., Li, Y., Zhao, Z., Liu, Y., ... & Wei, Y. (2021). A review of the formation of Cr (VI) via Cr (III) oxidation in soils and groundwater. Science of the Total Environment, 774, 145762. DOI: https://doi.org/10.1016/j.scitotenv.2021.145762

Lu, H., Wise, S. S., Speer, R. M., Croom-Perez, T. J., Toyoda, J. H., Meaza, I., ... & Wise Sr, J. P. (2024). Acute particulate hexavalent chromium exposure induces DNA double-strand breaks and activates homologous recombination repair in rat lung tissue. Toxicological Sciences, 201(1), 1-13. DOI: https://doi.org/10.1093/toxsci/kfae076

Malaviya, P., & Singh, A. (2016). Bioremediation of chromium solutions and chromium containing wastewaters. Critical reviews in microbiology, 42(4), 607-633. DOI: https://doi.org/10.3109/1040841X.2014.974501

Mansor, M. I., Fatehah, M. O., Aziz, H. A., & Wang, L. K. (2024). Occurrence, Behaviour and Transport of Heavy Metals from Industries in River Catchments. In Industrial Waste Engineering (pp. 205-277). Cham: Springer International Publishing. DOI: https://doi.org/10.1007/978-3-031-46747-9_6

Markam, S. S., Raj, A., Kumar, A., & Khan, M. L. (2024). Microbial biosurfactants: green alternatives and sustainable solution for augmenting pesticide remediation and management of organic waste. Current Research in Microbial Sciences, 100266. DOI: https://doi.org/10.1016/j.crmicr.2024.100266

Mat Arisah, F., Ramli, N., Ariffin, H., Maeda, T., Ahmad Farid, M. A., & Yusoff, M. Z. M. (2024). Pseudomonas aeruginosa-mediated cr (VI) bioremediation: mechanistic insights and future directions. Bioremediation Journal, 1-31. DOI: https://doi.org/10.1080/10889868.2024.2420071

Meaza, I., Williams, A. R., Wise, S. S., Lu, H., & Pierce Sr, J. W. (2024). Carcinogenic Mechanisms of Hexavalent Chromium: From DNA Breaks to Chromosome Instability and Neoplastic Transformation. Current Environmental Health Reports, 1-63. DOI: https://doi.org/10.1007/s40572-024-00460-9

Mishra, N., Kulkarni, B. D., Abrar, S., Shivale, N., & Agsar, D. (2024). Biosurfactants and biomass treatment technologies for heavy metals in wastewater. In Bio-organic Amendments for Heavy Metal Remediation (pp. 155-177). Elsevier. DOI: https://doi.org/10.1016/B978-0-443-21610-7.00038-0

Mishra, S., Bharagava, R. N., More, N., Yadav, A., Zainith, S., Mani, S., & Chowdhary, P. (2019). Heavy metal contamination: an alarming threat to environment and human health. Environmental biotechnology: For sustainable future, 103-125. DOI: https://doi.org/10.1007/978-981-10-7284-0_5

Mishra, S., Lin, Z., Pang, S., Zhang, Y., Bhatt, P., & Chen, S. (2021). Biosurfactant is a powerful tool for the bioremediation of heavy metals from contaminated soils. Journal of Hazardous Materials, 418, 126253. DOI: https://doi.org/10.1016/j.jhazmat.2021.126253

Mohanty, C., & Selvaraj, C. I. (2024). Leveraging plant-based remediation technologies against chromite mining toxicity. International Journal of Phytoremediation, 1-14. DOI: https://doi.org/10.1080/15226514.2024.2407908

Mulligan, C. N. (2017). Biosurfactants for the remediation of metal contamination. In Handbook of Metal-Microbe Interactions and Bioremediation (pp. 299-315). CRC Press. DOI: https://doi.org/10.1201/9781315153353-21

Musah, B. I. (2025). Effects of heavy metals and metalloids on plant-animal interaction and biodiversity of terrestrial ecosystemsAn overview. Environmental Monitoring and Assessment, 197(1), 1-26. DOI: https://doi.org/10.1007/s10661-024-13490-5

Nadar, S., & Khan, T. (2024). Chapter Role of Microbial Biofilms in Bioremediation: Current Perspectives. Microbes Based Approaches for the Management of Hazardous Contaminants, 257-276. DOI: https://doi.org/10.1002/9781119851158.ch17

Nawaz, T., Gu, L., Hu, Z., Fahad, S., Saud, S., & Zhou, R. (2024). Advancements in synthetic biology for enhancing cyanobacterial capabilities in sustainable plastic production: A green horizon perspective. Fuels, 5(3), 394-438. DOI: https://doi.org/10.3390/fuels5030023

Nguema, P. F., Luo, Z., & Lian, J. J. (2014). Enzymatic chromium (VI) reduction by cytoplasmic and cell membrane fractions of chromate-reducing bacterium isolated from sewage treatment plant. International Journal of Biology, 6(2), 64-76. DOI: https://doi.org/10.5539/ijb.v6n2

Nur-E-Alam, M., Mia, M. A. S., Ahmad, F., & Rahman, M. M. (2020). An overview of chromium removal techniques from tannery effluent. Applied Water Science, 10(9), 205. DOI: https://doi.org/10.1007/s13201-020-01286-0

Ogbeide, O., & Henry, B. (2024). Addressing Heavy Metal Pollution in Nigeria: Evaluating Policies, Assessing Impacts, and Enhancing Remediation Strategies. Journal of Applied Sciences and Environmental Management, 28(4), 1007-1051. DOI: https://doi.org/10.4314/jasem.v28i4.5

Ongong, R. O. (2022). Evaluation of pollution potential and bioremediation of tannery-based chromium wastes in Sub-Saharan Africa: the case of dump sites in Beit Ore Tannery in South Africa and Dogbone Tannery in Kenya (Doctoral dissertation).

Onyedikachi, U. B., & Mukah, F. E. (2024). Water Contamination by Industrial Processes and Sustainable Management Strategies. In Water Crises and Sustainable Management in the Global South (pp. 181-210). Singapore: Springer Nature Singapore. DOI: https://doi.org/10.1007/978-981-97-4966-9_6

Otzen, D. E. (2017). Biosurfactants and surfactants interacting with membranes and proteins: same but different?. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1859(4), 639-649. DOI: https://doi.org/10.1016/j.bbamem.2016.09.024

Pacwa-Pociniczak, M., Paza, G. A., Piotrowska-Seget, Z., & Cameotra, S. S. (2011). Environmental applications of biosurfactants: recent advances. International journal of molecular sciences, 12(1), 633-654. DOI: https://doi.org/10.3390/ijms12010633

Pandey, K., Saharan, B. S., Kumar, R., Jabborova, D., & Duhan, J. S. (2024). Modern-day green strategies for the removal of chromium from wastewater. Journal of Xenobiotics, 14(4), 1670-1696. DOI: https://doi.org/10.3390/jox14040089

Parades-Aguilar, J., Agustin-Salazar, S., Cerruti, P., Ambrogi, V., Calderon, K., Gamez-Meza, N., & Medina-Juarez, L. A. (2025). Agro-industrial wastes and their application perspectives in metal decontamination using biocomposites and bacterial biomass: a review. World Journal of Microbiology and Biotechnology, 41(1), 16. DOI: https://doi.org/10.1007/s11274-024-04227-0

Patil, A., Chakraborty, S., Yadav, Y., Sharma, B., Singh, S., & Arya, M. (2024). Bioremediation strategies and mechanisms of bacteria for resistance against heavy metals: a review. Bioremediation Journal, 1-33. DOI: https://doi.org/10.1080/10889868.2024.2375204

Pereira, S. C., Oliveira, P. F., Oliveira, S. R., Pereira, M. D. L., & Alves, M. G. (2021). Impact of environmental and lifestyle use of chromium on male fertility: focus on antioxidant activity and oxidative stress. Antioxidants, 10(9), 1365. DOI: https://doi.org/10.3390/antiox10091365

Prasad, S., Yadav, K. K., Kumar, S., Gupta, N., Cabral-Pinto, M. M., Rezania, S., ... & Alam, J. (2021). Chromium contamination and effect on environmental health and its remediation: A sustainable approaches. Journal of Environmental Management, 285, 112174 DOI: https://doi.org/10.1016/j.jenvman.2021.112174

Rahman, Z., Sanderson, P., & Naidu, R. (2024). Chromium: A pervasive environmental contaminant and its removal through different remediation techniques. In Inorganic Contaminants and Radionuclides (pp. 69-94). Elsevier. DOI: https://doi.org/10.1016/B978-0-323-90400-1.00015-X

Rajendran, S., Priya, T. A. K., Khoo, K. S., Hoang, T. K., Ng, H. S., Munawaroh, H. S. H., ... & Show, P. L. (2022). A critical review on various remediation approaches for heavy metal contaminants removal from contaminated soils. Chemosphere, 287, 132369. DOI: https://doi.org/10.1016/j.chemosphere.2021.132369

Rani, M., Yadav, J., & Shanker, U. (2024). Estimation and photocatalytic reduction of toxic chromium metal ions from environmental samples by zinc-based nanocomposite. New Journal of Chemistry, 48(5), 2188-2201. DOI: https://doi.org/10.1039/D3NJ04966C

Ray, S., & Vashishth, R. (2024). From Water to Plate: Reviewing the Bioaccumulation of Heavy Metals in Fish and Unraveling Human Health Risks in the Food Chain. Emerging Contaminants, 100358. DOI: https://doi.org/10.1016/j.emcon.2024.100358

Ren, W., Ren, G., Kuramae, E. E., Paul, L. E., Chen, S., Teng, Y., & Luo, Y. (2024). Mode of application of sulfonated graphene modulated bioavailable heavy metal contents and microbial community composition in long-term heavy metal contaminated soil. Science of The Total Environment, 954, 176295. DOI: https://doi.org/10.1016/j.scitotenv.2024.176295

Roy, T. (2024) Aquatic Ecosystem Toxicity and Food Chain. In Toxicity of Aquatic System and Remediation (pp. 25-36). DOI: https://doi.org/10.1201/9781003297901-3

Saha, R., Nandi, R., & Saha, B. (2011). Sources and toxicity of hexavalent chromium. Journal of Coordination Chemistry, 64(10), 1782-1806. DOI: https://doi.org/10.1080/00958972.2011.583646

Saek, K., Euston, S. R., & Janek, T. (2022). Phase behaviour, functionality, and physicochemical characteristics of glycolipid surfactants of microbial origin. Frontiers in Bioengineering and Biotechnology, 10, 816613. DOI: https://doi.org/10.3389/fbioe.2022.816613

Sanches, M. A., Luzeiro, I. G., Alves Cortez, A. C., Simplcio de Souza, ., Albuquerque, P. M., Chopra, H. K., & Braga de Souza, J. V. (2021). Production of biosurfactants by Ascomycetes. International Journal of Microbiology, 2021(1), 6669263. DOI: https://doi.org/10.1155/2021/6669263

Sarubbo, L. A., Maria da Gloria, C. S., Durval, I. J. B., Bezerra, K. G. O., Ribeiro, B. G., Silva, I. A., ... & Banat, I. M. (2022). Biosurfactants: Production, properties, applications, trends, and general perspectives. Biochemical Engineering Journal, 181, 108377. DOI: https://doi.org/10.1016/j.bej.2022.108377

Sarubbo, L. A., Rocha Jr, R. B., Luna, J. M., Rufino, R. D., Santos, V. A., & Banat, I. M. (2015). Some aspects of heavy metals contamination remediation and role of biosurfactants. Chemistry and Ecology, 31(8), 707-723. DOI: https://doi.org/10.1080/02757540.2015.1095293

Sazakli, E. (2024). Human Health Effects of Oral Exposure to Chromium: A Systematic Review of the Epidemiological Evidence. International Journal of Environmental Research and Public Health, 21(4), 406. DOI: https://doi.org/10.3390/ijerph21040406

Selva Filho, A. A. P., Converti, A., Soares da Silva, R. D. C. F., & Sarubbo, L. A. (2023). Biosurfactants as multifunctional remediation agents of environmental pollutants generated by the petroleum industry. Energies, 16(3), 1209. DOI: https://doi.org/10.3390/en16031209

Shahwar, D., Ibrahim, P. N. M., Ali, S. M. B., & Khan, Z. (2024). Remediation of heavy metals contaminated wastewaters through microbes: Recent progress and future prospects. Bio-organic Amendments for Heavy Metal Remediation, 135-153. DOI: https://doi.org/10.1016/B978-0-443-21610-7.00017-3

Shan, B., Hao, R., Xu, H., Zhang, J., Li, J., Li, Y., & Ye, Y. (2022). Hexavalent chromium reduction and bioremediation potential of Fusarium proliferatum S4 isolated from chromium-contaminated soil. Environmental Science and Pollution Research, 29(52), 78292-78302. DOI: https://doi.org/10.1007/s11356-022-21323-6

Sharma, A., Maurya, N., Singh, S. K., & Sundaram, S. (2024). Investigation on synergetic strategy for the rejuvenation of Cr (VI) contaminated soil using biochar-immobilized bacteria and cyanobacteria consortia. Journal of Environmental Chemical Engineering, 12(2), 112034. DOI: https://doi.org/10.1016/j.jece.2024.112034

Sharma, P. (2022). Role and significance of biofilm-forming microbes in phytoremediation-a review. Environmental technology & innovation, 25, 102182. Achmad, R. T., & Auerkari, E. I. (2017). Effects of chromium on human body. Annual Research & Review in Biology, 13(2), 1-8. DOI: https://doi.org/10.1016/j.eti.2021.102182

Sharma, P., Singh, S. P., Parakh, S. K., & Tong, Y. W. (2022). Health hazards of hexavalent chromium (Cr (VI)) and its microbial reduction. Bioengineered, 13(3), 4923-4938. DOI: https://doi.org/10.1080/21655979.2022.2037273

Simes, C. R., da Silva, M. W. P., de Souza, R. F. M., Hacha, R. R., Merma, A. G., Torem, M. L., & Silvas, F. P. C. (2024). Biosurfactants: An Overview of Their Properties, Production, and Application in Mineral Flotation. Resources, 13(6), 81. DOI: https://doi.org/10.3390/resources13060081

Singh, K., Kumari, M., & Prasad, K. S. (2023). Tannery effluents: current practices, environmental consequences, human health risks, and treatment options. CLEANSoil, Air, Water, 51(3), 2200303. DOI: https://doi.org/10.1002/clen.202200303

Singh, P., Itankar, N., & Patil, Y. (2021). Biomanagement of hexavalent chromium: Current trends and promising perspectives. Journal of Environmental Management, 279, 111547. DOI: https://doi.org/10.1016/j.jenvman.2020.111547

Thakur, V., Baghmare, P., Verma, A., Verma, J. S., & Geed, S. R. (2024). Recent progress in microbial biosurfactants production strategies: Applications, technological bottlenecks, and future outlook. Bioresource Technology, 131211. DOI: https://doi.org/10.1016/j.biortech.2024.131211

Tiwari, M., & Tripathy, D. B. (2023). Soil contaminants and their removal through surfactant-enhanced soil remediation: a comprehensive review. Sustainability, 15(17), 13161. DOI: https://doi.org/10.3390/su151713161

Tumolo, M., Ancona, V., De Paola, D., Losacco, D., Campanale, C., Massarelli, C., & Uricchio, V. F. (2020). Chromium pollution in European water, sources, health risk, and remediation strategies: An overview. International journal of environmental research and public health, 17(15), 5438. DOI: https://doi.org/10.3390/ijerph17155438

Vaiopoulou, E., & Gikas, P. (2020). Regulations for chromium emissions to the aquatic environment in Europe and elsewhere. Chemosphere, 254, 126876. DOI: https://doi.org/10.1016/j.chemosphere.2020.126876

Venkataraman, S., Rajendran, D. S., & Vaidyanathan, V. K. (2024). An insight into the utilization of microbial biosurfactants pertaining to their industrial applications in the food sector. Food Science and Biotechnology, 33(2), 245-273. DOI: https://doi.org/10.1007/s10068-023-01435-6

Verma, A., Sharma, G., Kumar, A., Dhiman, P., & Stadler, F. J. (2025). Recent Advancements in Biochar and its Composite for the Remediation of Hazardous Pollutants. Current Analytical Chemistry, 21(1), 15-56. DOI: https://doi.org/10.2174/0115734110286724240318051113

Xia, S., Song, Z., Jeyakumar, P., Shaheen, S. M., Rinklebe, J., Ok, Y. S., ... & Wang, H. (2019). A critical review on bioremediation technologies for Cr (VI)-contaminated soils and wastewater. Critical reviews in environmental science and technology, 49(12), 1027-1078. DOI: https://doi.org/10.1080/10643389.2018.1564526

Xie, S. (2024). Water contamination due to hexavalent chromium and its health impacts: exploring green technology for Cr (VI) remediation. Green Chemistry Letters and Reviews, 17(1), 2356614. DOI: https://doi.org/10.1080/17518253.2024.2356614

Yagnik, S. M., Arya, P. S., & Raval, V. H. (2023). Microbial enzymes in bioremediation. In Biotechnology of microbial enzymes (pp. 685-708). Academic Press. DOI: https://doi.org/10.1016/B978-0-443-19059-9.00010-4

Yesankar, P. J., Pal, M., Patil, A., & Qureshi, A. (2023). Microbial exopolymeric substances and biosurfactants as bioavailability enhancers for polycyclic aromatic hydrocarbons biodegradation. International Journal of Environmental Science and Technology, 20(5), 5823-5844. DOI: https://doi.org/10.1007/s13762-022-04068-0

Zha, S., Yu, A., Wang, Z., Shi, Q., Cheng, X., Liu, C., ... & Zhou, L. (2024). Microbial strategies for effective hexavalent chromium removal: A comprehensive review. Chemical Engineering Journal, 489, 151457. DOI: https://doi.org/10.1016/j.cej.2024.151457

Published
2025-01-31
How to Cite
Usman Ali Bukar, KawoA. H., YahayaS., YahayaS., InuwaA. B., & FardamiA. Y. (2025). BIOSURFACTANT PROPERTIES AND ITS APPLICATION IN CHROMIUM REMOVAL: A REVIEW. FUDMA JOURNAL OF SCIENCES, 9(1), 273 - 287. https://doi.org/10.33003/fjs-2025-0901-3069