INTEGRATION OF LAYER-WISE RELEVANCE PROPAGATION, RECURSIVE DATA PRUNING, AND CONVOLUTIONAL NEURAL NETWORKS FOR IMPROVED TEXT CLASSIFICATION
Abstract
This research presents a significant advancement in text classification by integrating Layer-wise Relevance Propagation (LRP), recursive data pruning, and Convolutional Neural Networks (CNNs) with cross-validation. The study addresses the critical limitations of existing text classification methods, particularly issues of information loss and overfitting, which often hinder the efficiency and interpretability of models in natural language processing (NLP). To overcome these challenges, the proposed model employs LRP to enhance the interpretability of the classification process, allowing for precise identification of relevant features that contribute to decision-making. Additionally, the implementation of recursive data pruning optimizes model efficiency by dynamically eliminating irrelevant or redundant data, thereby reducing computational complexity without compromising performance. The effectiveness of the approach is further bolstered by utilizing cross-validation techniques to ensure robust evaluation across diverse datasets. The empirical evaluation of the integrated model revealed remarkable improvements in classification performance, achieving an accuracy of 94%, surpassing the benchmark of 92.88% established by the ReDP-CNN model proposed by Li et al. (2020). The comprehensive assessment included detailed metrics such as precision, recall, and F1-score, confirming the model's robust capability in accurately classifying text data across various categories.
References
Abbasi, A., Chakraborty, C., Nebhen, J., Zehra, W., and Jalil, Z. (2021). Elstream: an ensemble learning approach for concept drift detection in dynamic social big data stream learning. IEEE Access 9, 6640866419. https://doi.org/10.1109/ACCESS.2021.3076264 DOI: https://doi.org/10.1109/ACCESS.2021.3076264
Abdullah Alqahtani Habib Ullah Khan, Shtwai Alsubai1, Mohemmed Sha, Ahmad Almadhor ,Tayyab Iqbal and Sidra Abbas(2022) An efficient approach for textual data classification using deep learning DOI: https://doi.org/10.3389/fncom.2022.992296
Amin, F., & Mahmoud, M. (2022). Confusion matrix in binary classification problems: A step-by-step tutorial. Journal of Engineering Research, 6(5), 0-0. DOI: https://doi.org/10.21608/erjeng.2022.274526
Bashir, M. F., Javed, A. R., Arshad, M. U., Gadekallu, T. R., Shahzad, W., and Beg, M. O. (2022). Context aware emotion detection from low resource urdu language using deep neural network, in Transactions on Asian and Low-Resource Language Information Processing. DOI: https://doi.org/10.1145/3528576
oban, .; zel, S.A.; Inan, A. Deep learning-based sentiment analysis of Facebook data: The case of Turkish users. Comput. J. 2021, 64, 473499. DOI: https://doi.org/10.1093/comjnl/bxaa172
Dogru, H.B.; Tilki, S.; Jamil, A.; Hameed, A.A. Deep learning-based classification of news texts using doc2vec model. In Proceedings of the 1st International Conference on Artificial Intelligence and Data Analytics (CAIDA), Riyadh, Saudi Arabia, 67 April 2021; IEEE: Riyadh, Saudi Arabia, 2021; pp. 9196. DOI: https://doi.org/10.1109/CAIDA51941.2021.9425290
Hassan, S. U., Ahamed, J., & Ahmad, K. (2022). Analytics of machine learning-based algorithms for text classification. Sustainable Operations and Computers, 3, 238-248. DOI: https://doi.org/10.1016/j.susoc.2022.03.001
Hartmann, J.; Huppertz, J.; Schamp, C.; Heitmann, M. Comparing automated text classification methods. Int. J. Res. Mark. 2019, 36, 2038. DOI: https://doi.org/10.1016/j.ijresmar.2018.09.009
Hina, M., Ali, M., Javed, A. R., Srivastava, G., Gadekallu, T. R., and Jalil, Z. (2021b). Email classification and forensics analysis using machine learning, in 2021 IEEE SmartWorld, Ubiquitous Intelligence and Computing, Advanced Trusted Computing, Scalable Computing and Communications, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/IOP/SCI) (Atlanta, GA: IEEE), 630635. DOI: https://doi.org/10.1109/SWC50871.2021.00093
Kim, H., & Jeong, Y. S. (2019). Sentiment classification using convolutional neural networks. Applied Sciences, 9(11), 2347.. DOI: https://doi.org/10.3390/app9112347
Kohlbrenner, M., Bauer, A., Nakajima, S., Binder, A., Samek, W., & Lapuschkin, S. (2020, July). Towards best practice in explaining neural network decisions with LRP. In 2020 International Joint Conference on Neural Networks (IJCNN) (pp. 1-7). IEEE. DOI: https://doi.org/10.1109/IJCNN48605.2020.9206975
Kuyumcu, B.; Aksakalli, C.; Delil, S. An automated new approach in fast text classification (fastText): A case study for Turkish text classification without pre-processing. In Proceedings of the 3rd International Conference on Natural Language Processing and Information Retrieval, ACM, Tokushima, Japan, 2830 June 2019; pp. 14 DOI: https://doi.org/10.1145/3342827.3342828
Lapuschkin, S. (2019). Opening the machine learning black box with layer-wise relevance propagation (Doctoral dissertation, Dissertation, Berlin, Technische Universitt Berlin, 2018).Applied Sciences, 9(11), 2347.
Li, Q.; Peng, H.; Li, J.; Xia, C.; Yang, R.; Sun, L.; Yu, P.S.; He, L. A survey on text classification: From traditional to deep learning. ACM Trans. Intell. Syst. Technol. (TIST) 2022, 13, 141. DOI: https://doi.org/10.1145/3495162
Li, Q., Li, P., Mao, K., & Lo, E. Y. M. (2020). Improving convolutional neural network for text classification by recursive data pruning. Neurocomputing, 414, 143-152. DOI: https://doi.org/10.1016/j.neucom.2020.07.049
Macukow, B. (2016). Neural networksstate of art, brief history, basic models and architecture. In Computer Information Systems and Industrial Management: 15th IFIP TC8 International Conference, CISIM 2016, Vilnius, Lithuania, September 14-16, 2016, Proceedings 15 (pp. 3-14). Springer International Publishing. DOI: https://doi.org/10.1007/978-3-319-45378-1_1
O'Shea, K., & Nash, R. (2015). An Introduction to Convolutional Neural Networks. ArXiv, abs/1511.08458.
Romero, M., Gudria, W., Panetto, H., & Barafort, B. (2022). A hybrid deep learning and ontology-driven approach to perform business process capability assessment. Journal of Industrial Information Integration, 30, 100409. DOI: https://doi.org/10.1016/j.jii.2022.100409
Salter, C. (2020). Neuronal acts. Performance Research, 25(3), 104-113. DOI: https://doi.org/10.1080/13528165.2020.1807768
Toofani, A., Singh, L., & Paul, S. (2024). From interpretation to explanation: An analytical examination of deep neural network with linguistic rule-based model. Computers and Electrical Engineering, 117, 109258 DOI: https://doi.org/10.1016/j.compeleceng.2024.109258
Uysal, A.K.; Gunal, S. The impact of preprocessing on text classification. Inf. Process. Manag. 2014, 50, 104112 DOI: https://doi.org/10.1016/j.ipm.2013.08.006
Vukadin, D., Afri, P., ili, M., & Dela, G. (2024). Advancing Attribution-Based Neural Network Explainability through Relative Absolute Magnitude Layer-Wise Relevance Propagation and Multi-Component Evaluation. ACM Transactions on Intelligent Systems and Technology. DOI: https://doi.org/10.1145/3649458
Xiao, Y., Duan, Z., & Lei, P. (2024). Explaining Multiple Types of Crash Injury Severity Predictions with Layer-wise Relevance Propagation in Multi-task Deep Neural Networks. DOI: https://doi.org/10.21203/rs.3.rs-4250529/v1
Yamashita, R., Nishio, M., Do, R. K. G., & Togashi, K. (2018). Convolutional neural networks: an overview and application in radiology. Insights into imaging, 9(4), 611-629 DOI: https://doi.org/10.1007/s13244-018-0639-9
Yldrm, S.; Yldz, T. A comparative analysis of text classification for Turkish language. Pamukkale Univ. J. Eng. Sci. 2018, 24, 879886 DOI: https://doi.org/10.5505/pajes.2018.15931
Zang, B., Ding, L., Feng, Z., Zhu, M., Lei, T., Xing, M., & Zhou, X. (2021). CNN-LRP: Understanding convolutional neural networks performance for target recognition in SAR images. Sensors, 21(13), 4536. DOI: https://doi.org/10.3390/s21134536
Zulqarnain, M.; Alsaedi, A.K.Z.; Ghazali, R.; Ghouse, M.G.; Sharif, W.; Husaini, N.A. A comparative analysis on question classification task based on deep learning approaches. PeerJ Comput. Sci. 2021, 7, e570. DOI: https://doi.org/10.7717/peerj-cs.570
Copyright (c) 2025 FUDMA JOURNAL OF SCIENCES

This work is licensed under a Creative Commons Attribution 4.0 International License.
FUDMA Journal of Sciences