ANALYSIS FROM 1980 TO 2018 OF TIDAL OBSERVATION DATA FOR ASSESSING THE STABILITY OF TIDAL CONSTANTS FOR PRIMARY PORT

  • Barnabas O. Morakinyo Baze University, Abuja, Nigeria
Keywords: Bonny port, Time series, Tidal constants, Least Squares Method (LSM), Standard port, Niger Delta

Abstract

Tidal analysis involves the computation of tidal constants (phase lag (g) and amplitude (H)) of tidal constituents at a location. This study focuses on the assessment of the stability of g and H for the Bonny port which is the only standard tidal port in Nigeria. Monthly analysis of tidal observations was carried out with 1980, 1994 and 2018 year’s data using Least Squares Method (LSM) of Harmonic Analysis with MATLAB programming codes. The observation equation technique of LSM is adopted; the dimension of the Normal (N) matrix equations obtained for the monthly analysis is 72  56 i.e. 72 rows, and 56 columns. The N matrix is inverted and gave results for mean sea level (MSL) and g and H of 28 primary constituents of tide. Four major constituents of tide (M2, S2, K1 and O1) remain stable throughout the analysis. The mean of g and H obtained for each year was observed to be almost equal to the mean obtained from the three-year data. The maximum residuals and spreads of the computed g and H over the period of study show that g and H at Bonny are stable and that results from accurately analyze one-month data observation can be employed for tidal prediction for several years. Therefore, it can be concluded that the g and H for M2, S2, K1 and O1 are stable and that the type of tide (F) at Bonny port is semidiurnal since the computed F is 0.16 which is  0.25.

References

Abubakar, A. G., Mahmud, M. R., Tang, K. K. W., Hussaini, A., & Md Yusuf, N. H. (2019). A Review of modelling approaches on tidal analysis and prediction. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-4/W16, 23-34. https://doi.org/10.5194/isprs-archives-xlii-4-w16-23-2019 . DOI: https://doi.org/10.5194/isprs-archives-XLII-4-W16-23-2019

Abubakar, A. G., Mahmud, M. R., Tang, K. K. W., & Husaaini, A. (2021). The determination of tidal constituents using Wavelet Base Harmonic at the Strait of Malacca. IOP Conference Series: Earth and Environmental Science, 731, 012001. https://doi.org/10.1088/1755-1315/731/1/012001 . DOI: https://doi.org/10.1088/1755-1315/731/1/012001

Ahmed, A. A. M., Jui, S. J. J., AL-Musaylh, M. S., Raj, N., Saha, R., Deo, R. C., & Saha, S. K. (2024). Hybrid deep learning model for wave height prediction in Australia's wave energy region. Applied Soft Computing, 150, 111003. https://doi.org/10.1016/j.asoc.2023.111003 . DOI: https://doi.org/10.1016/j.asoc.2023.111003

Amin, M. (1986). On the conditions for classification of tides. The International Hydrographic Review, 63(1), 161-174.

Annunziato, A., & Probst, P. (2016). Continuous harmonics analysis of sea level measurements: Description of a new method to determine sea level measurement tidal component. Publications Office of the European Union, Luxembourg, Luxembourg. https://doi.org/10.2788/4295 .

Badejo, O. T., & Akintoye, S. O. (2017). High and low water prediction at Lagos harbour, Nigeria, Nigerian Journal of Technology. https://doi.org/10.4314/njt.v36i3.39 . DOI: https://doi.org/10.4314/njt.v36i3.39

Boon, J. D., & Kiley, K. P. (1978). Harmonic analysis and tidal prediction by the method of least squares: A user's manual. Virginia Institute of Marine Science, Virginia, United States.

Byun, D. S., Hart, D. E., Kim, S., & Ha, J. (2023). Classification of monthly tidal envelopes in mixed tide regimes. Scientific Reports, 13(1), 4786. https://doi.org/10.1038/s41598-023-31657-x . DOI: https://doi.org/10.1038/s41598-023-31657-x

Byun, D. S., & Hart, D. E. (2020). A monthly tidal envelope classification for semidiurnal regimes in terms of the relative proportions of the S2, N2, and M2 constituents. Ocean Science, 16(4), 965-977. https://doi.org/10.5194/os-16-965-2020 . DOI: https://doi.org/10.5194/os-16-965-2020

Cai, S., Liu, L., & Wang, G. (2018). Short-term tidal level prediction using normal time-frequency transform, Ocean Engineering. Elsevier, 156: 489-499. DOI: https://doi.org/10.1016/j.oceaneng.2018.03.021

Cartwright, D. E. (1980): Report on tides and surges. The Hydrographic journal, 1(3): 31-33, published by the

Hydrographic society, London.

Cartwright, D. E., & Edden, A. C. (1973). Corrected tables of tidal harmonics. Geophysical Journal of the Royal Astronomical Society, 33(3): 253-264. https://doi.org/10.1111/j.1365-246X.1973.tb03420.x . DOI: https://doi.org/10.1111/j.1365-246X.1973.tb03420.x

Cauwenberghe, C. V. (1992): Harmonic tidal predictions along the Belgium Coast. The hydrographic journal, 63, 31-47, published by the hydrographic society, London.

Choi, I. C., Mok, K. M., & Tam, S. C. (2000). Solving harmonic sea-level model with Kalman filter: a Macau case study, Carbonate Beaches, 38-52. https://doi.org/10.1061/40640(305)4 . DOI: https://doi.org/10.1061/40640(305)4

Daher, V. B., Paes, R. C. de O. V., Frana, G. B., Alvarenga, J. B. R., & Teixeira, G. L. G. (2015). Extraction of tide constituents by harmonic analysis using altimetry satellite data in the Brazilian coast. Journal of Atmospheric and Oceanic Technology, 32(3): 614-626. https://doi.org/10.1175/JTECH-D-14-00091.1 . DOI: https://doi.org/10.1175/JTECH-D-14-00091.1

Ezisi, O. P., Ezugwu, N. C., & Mmonwuba, C. N. (2024). The impact of 2018 Earth tremors on groundwater quality in the Federal Capital Territory, Abuja. FUDMA Journal of Sciences (FJS), 8(6): 1-4. DOI: https://doi.org/10.33003/fjs-2024-0806-2900

Foreman, M. G. G. (1977). Manual for tidal heights analysis and prediction. Institute of Ocean Sciences, Patricia Bay, British Columbia, Canada.

Godin, G., & Taylor, J. (1973). A simple method for the prediction of the time and height of high and low water. The International Hydrographic Review, 50(2): 75-81.

Haigh, I. D. (2017). Tides and water levels, Encyclopedia of Maritime and Offshore Engineering, pp. 1-13. https://doi.org/10.1002/9781118476406.emoe122 . DOI: https://doi.org/10.1002/9781118476406.emoe122

Hirvonen, R. A. (1979): Adjustment by Least Squares in Geodesy and photogrammetry, Fredrick Ungar Publishing Company, New York, USA.

Hydrographer of the Navy (1988): Admiralty Tide Tables and Tidal Streams, Vol. 2, Printed in England, U.K.

Hydrographer of the Navy (1964). Harmonic Tidal Analysis for Short Period Observations.

Joan, B. (1989): Waves, Tides and Shallow - Water process, 1st edition, Pergamon press limited, England.

Lee, S. H., & Chang, Y. S. (2019). Classification of the global tidal types based on Auto-correlation Analysis. Ocean Science Journal, 54(2): 279-286. https://doi.org/10.1007/s12601-019-0009-7 . DOI: https://doi.org/10.1007/s12601-019-0009-7

Li, S., Liu, L., Cai, S., & Wang, G. (2019). Tidal harmonic analysis and prediction with least-squares estimation and inaction method. Estuarine, Coastal and Shelf Science, 220: 196-208. https://doi.org/10.1016/j.ecss.2019.02.047 . DOI: https://doi.org/10.1016/j.ecss.2019.02.047

Madah, F. A. (2020). The amplitudes and phases of tidal constituents from Harmonic Analysis at two stations in the Gulf of Aden. Earth Systems and Environment, 4(2), 321-328. https://doi.org/10.1007/s41748-020-00152-y . DOI: https://doi.org/10.1007/s41748-020-00152-y

Meena, B. L., & Agrawal, J. D. (2015). Tidal level forecasting using ANN. Procedia Engineering, 116(1): 607-614. https://doi.org/10.1016/j.proeng.2015.08.332 . DOI: https://doi.org/10.1016/j.proeng.2015.08.332

Meriman, A. G. (1985). Harmonic tidal analysis. Errors due to Poor Inferences. The Hydrographic Journal, UK

Mikhail, M. (1981): Analysis and Adjustment of Survey Measurements, 1st Edition, published by

Van Nostrand Reinhold Company Ltd, New York

Moore, R. A. (2020). Characterization of seasonal variability in tides. Department of Mathematics, The University of Utah, Salt Lake City, United States.

Morakinyo, B. O. (2003). Evaluation of Stability of Tidal Constants for Bonny Standard Port. M.Sc. Dissertation, Department of Geoinformatics & Surveying, University of Nigeria, Enugu Campus, Enugu State, Nigeria.

Ojinnaka, O. C. (2007). Principles of Hydrographic Surveying: From Sextant to Satellite. El Demak Publishers, Enugu State, Nigeria.

Okwuashi, O., & Olayinka, D. N. (2017) Tide modelling using the Kalman filter, Journal of Spatial Science. Taylor & Francis, 62(2): 353-365. https://doi.org/10.1080/14498596.2016.1245162 . DOI: https://doi.org/10.1080/14498596.2016.1245162

Pan, H., Xu, T., & Wei, Z. (2023). A modified tidal harmonic analysis model for short-term water level observations. Ocean Modelling, 186, 102251. https://doi.org/10.1016/j.ocemod.2023.102251 DOI: https://doi.org/10.1016/j.ocemod.2023.102251

Parker, B. B. (2007). Tidal analysis and prediction. Silver Spring, Department of Commerce, Maryland, United States.

Parker, B. B. (1977). Tidal hydrodynamics in the Strait of Juan de Fuca--Strait of Georgia (No. 69). Department of Commerce, National Oceanic and Atmospheric Administration, National Ocean Survey, Silver Spring, Maryland, United States.

Pugh, D. T. (1987): Tides, surges, mean sea level. A Handbook for Engineers and Scientists, John Wiley and Sons, Chichester England.

Rusdin, A., Oshikawa, H., Divanesia, A. M. A., & Hatta, M. P. (2024). Analysis and prediction of tidal measurement data from temporary stations using the Least Squares Method. Civil Engineering Journal, 10(2): 384-403, (E-ISSN: 2476-3055; ISSN: 2676-6957). DOI: https://doi.org/10.28991/CEJ-2024-010-02-03

Sabhan, S., Badaruddin, Kurniawan, M., & Rusydi, M. (2021). Tidal and bathymetry characteristics after the 2018 earthquake and tsunami in Watusampu Waters, Palu Bay, Central Sulawesi. Natural Science: Journal of Science and Technology, 10(1): 26-30. https://doi.org/10.22487/25411969.2021.v10.i1.15505 . DOI: https://doi.org/10.22487/25411969.2021.v10.i1.15505

Schureman, P. (1994). Manual of harmonic analysis and prediction of tides (No. 98). US Department of Commerce, Coast and Geodetic Survey, Washington, United States.

Setiyawan, Rusdin, A., Amaliah, T., & Olphino. (2022). Potential of tidal power plants on Tibo Beach with spectrum method. IOP Conference Series: Materials Science and Engineering, 1212(1), 012039. https://doi.org/10.1088/1757-899x/1212/1/012039 . DOI: https://doi.org/10.1088/1757-899X/1212/1/012039

Shu, J. (2003). Prediction and analysis of tides and tidal currents. International Hydrography Review, 4(2), New Series, 57-64.

Slobbe, D. C., Sumihar, J., Frederikse, T., Verlaan, M., Klees, R., Zijl, F., & Broekman, R. (2018). A Kalman filter approach to realize the lowest astronomical tide surface. Marine Geodesy, 41(1): 44-67. DOI: https://doi.org/10.1080/01490419.2017.1391900

Stephenson, A. G. (2016). Harmonic analysis of tides using tide harmonics. The Comprehensive R Archive Network (CRAN). Retrieved 26 June 2024 from: https://cran.biotools.fr/web/packages/TideHarmonics/vignettes/austides.pdf

Susanto, R. D., Gordon, A. L., Sprintall, J., & Herunadi, B. (2000). Intra-seasonal variability and tides in Makassar Strait. Geophysical Research Letters, 27(10): 1499-1502. https://doi.org/10.1029/2000GL011414 . DOI: https://doi.org/10.1029/2000GL011414

Thomson, R. E., & Emery, W. J. (2014). Data analysis methods in physical oceanography (3rd Ed.). Elsevier Science, Amsterdam, Netherlands. https://doi.org/10.1016/C2010-0-66362-0 . DOI: https://doi.org/10.1016/C2010-0-66362-0

Wang, W., & Yuan, H. (2018). A tidal level prediction approach based on BP Neural Network and Cubic B-Spline Curve with Knot Insertion Algorithm. DOI: https://doi.org/10.1155/2018/9835079

Yen, P.-H., Jan, C.-D., Lee, Y.-P., & Lee, H.-F. (1996). Application of Kalman Filter to short-term tide level prediction. Journal of Waterway, Port, Coastal, and Ocean Engineering, 122(5): 226-231. https://doi.org/10.1061/(asce)0733-950x(1996)122:5(226) . DOI: https://doi.org/10.1061/(ASCE)0733-950X(1996)122:5(226)

Zetler, B. D. (1982). Computer applications to tides in the national ocean survey (No. 98). National Oceanic and Atmospheric Administration, National Ocean Survey, Silver Spring, Maryland, United States.

Published
2024-12-31
How to Cite
MorakinyoB. O. (2024). ANALYSIS FROM 1980 TO 2018 OF TIDAL OBSERVATION DATA FOR ASSESSING THE STABILITY OF TIDAL CONSTANTS FOR PRIMARY PORT. FUDMA JOURNAL OF SCIENCES, 8(6), 503 - 513. https://doi.org/10.33003/fjs-2024-0806-3043