MECHANICAL AND VISCOELASTIC PROPERTIES OF COCONUT COIR FIBRE REINFORCED HIGH-DENSITY POLYETHYLENE COMPOSITE FOR APPLICATION AS WALL TILE
Abstract
In the effort to clean up the environment and transform plastic waste into valuable resources, the mechanical and thermal properties of a composite made from High- Density Polyethylene (HDPE) and Coconut Coir Fiber (CCF) were examined to determine the optimal blending ratio for producing wall tiles. The Coconut Coir Fiber was treated with 10% w/v sodium hydroxide and mixed with waste HDPE using a roll melt mixing compression molding technique. The study assessed tensile strength, flexural strength, and hardness. While the addition of coconut coir fiber improved the hardness of recycled HDPE, it did not enhance flexural or tensile strengths. The viscoelastic properties, evaluated using a 242E dynamic mechanical analyzer over a temperature range of 30°C to 130°C at frequencies of 2 Hz, 5 Hz, and 10 Hz, revealed that the composite exhibited better thermal stability at higher temperatures than waste HDPE.
References
ASTM. (2014). Astm d638: Standard test method for the tensile properties of polymer matrix composite (Vol. 08.01). West Conshohocken, PA: ASTM International. (Developed by Subcommittee D20.10. ICS Code: 83.080.01) https://doi.org/10.1520/D0638-14 DOI: https://doi.org/10.1520/D0638-14
ASTM. (2015a). Astm d7028: Standard test method for glass transition temperature (dma tg) of polymer matrix composites by dynamic mechanical analysis (dma) (ASTM D7028-07(2015) ed.). West Conshohocken, PA. (Reinforced plastics. Glass transition temperature measurement.)
ASTM. (2015b). Astm d790 standard test method for flexural properties of polymer composites, american society for testing and materials (Vol. 08.01). West Conshohocken, PA: ASTM International. (Developed by Subcommittee D20.10. ICS Code: 29.035.20) https://doi.org/10.1520/D0790-17 DOI: https://doi.org/10.1520/D0790-17
Adah P. U., Nuhu A. A., Salawu A. A., Hassan A. B., & Ubi P. A. (2024). CHARACTERIZATION OF PERIWINKLE SHELL ASH REINFORCED POLYMER COMPOSITE FOR AUTOMOTIVE APPLICATION. FUDMA JOURNAL OF SCIENCES, 8(1), 83 - 92. https://doi.org/10.33003/fjs-2024-0801-2158 DOI: https://doi.org/10.33003/fjs-2024-0801-2158
Bahra, M., Gupta, V., & Aggarwal, L. (2017). Effect of fibre content on mechanical properties and water absorption behaviour of pineapple/hdpe composite. Materials Today: Proceedings, 4, 3207-3214. https://doi.org/10.1016/j.matpr.2017.02.206 DOI: https://doi.org/10.1016/j.matpr.2017.02.206
Cardoso, M., & Fisch, A. (2016). Bimodal high-density polyethylene: Influence of the stereoregularity of the copolymer fraction on the environmental stress crack resistance. Industrial Engineering Chemistry Research, 55. https://doi.org/10.1021/acs.iecr.6b00927 DOI: https://doi.org/10.1021/acs.iecr.6b00927
Charoenvai, S. (2014). Durian peels fiber and recycled hdpe composites obtained by extrusion. Energy Procedia, 56. https://doi.org/10.1016/j.egypro.2014.07.190 DOI: https://doi.org/10.1016/j.egypro.2014.07.190
Daramola, O., Akinwekomi, A., Adediran, A., Akindote-White, O., & Sadiku, R. (2019). Mechanical performance and water uptake behaviour of treated bamboo fibre- reinforced high-density polyethylene composites. Heliyon, 5, e02028. https://doi.org/10.1016/j.heliyon.2019.e02028 DOI: https://doi.org/10.1016/j.heliyon.2019.e02028
Gonzalez, S., Fabio, C., Boudaoud, H., Nouvel, C., and Pearce, J. (2024). Multi-material distributed recycling via material extrusion: recycled high density polyethylene and polyethylene terephthalate mixture. Polymer Engineering Science, 64. https://doi.org/10.1002/pen.26643 DOI: https://doi.org/10.1002/pen.26643
Gupta, M. (2017). Effect of variation in frequencies on dynamic mechanical proper- ties of jute fibre reinforced epoxy composites. Journal of Materials and Environmental Sciences, 9. https://doi.org/10.26872/jmes.2018.9.1.12 DOI: https://doi.org/10.26872/jmes.2018.9.1.12
Jacob, J. (2023). Effect of variation in frequency on the dynamic mechanical properties of plantain peel particulate reinforced recycled polypropylene composites. Journal of Materials and Environmental Science, 14(3), 317323.
Jacob, J., Mamza, P., Ahmad, A., & Yaro, S. (2019). Thermo-mechanical characterization of plantain particulate reinforced waste hdpe as composite wall tiles. Nigerian Journal of Chemical Sciences, 7, 124136.
Jacob, J., Mamza, P., Ahmed, A., & Yaro, S. (2018). Effect of groundnut shell powder on the viscoelastic properties of recycled high density polyethylene composites. Bayero Journal of Pure and Applied Sciences, 11(1), 139144. DOI: https://doi.org/10.4314/bajopas.v11i1.23S
Jacob, J., & Mamza, P. A. P. (2021). Mechanical and thermal behavior of plantain peel powder filled recycled polyethylene composites. Ovidius University Annals of Chemistry, 32(2), 114119. DOI: https://doi.org/10.2478/auoc-2021-0017
John, M. J., and Thomas, S. (2008). Biofibres and biocomposites. Carbohydrate Polymers, 71(3), 343-364. Retrieved from https://www.sciencedirect.com/science/ article/pii/S0144861707002974 https://doi.org/10.1016/j.carbpol.2007.05.040 DOI: https://doi.org/10.1016/j.carbpol.2007.05.040
Karina, M., Onggo, H., Abdullah, A., & Syampurwadi, A. (2008). Effect of oil palm empty fruit bunch fiber on the physical and mechanical properties of fiber glass reinforced polyester resin. Journal of Biological Sciences, 8. https://doi.org/10.3923/jbs.2008.101.106 DOI: https://doi.org/10.3923/jbs.2008.101.106
Lakshmikanthan, A., Malik, V., Saxena, K., Prakash, C., Dixit, S., & Mohammed, K. (2022). Mechanical and tribological properties of aluminum-based metal-matrix com- posites. Materials. https://doi.org/10.3390/ma15176111 DOI: https://doi.org/10.3390/ma15176111
Medupin, R., Abubakre, O., Abdulkareem, A., Muriana, R., Kariim, I., & Bada, S. (2018). Thermal and physico-mechanical stability of recycled high density polyethylene re- inforced with oil palm fibres. Engineering Science and Technology, an International Journal, 20(6), 1623-1631. Retrieved from https://www.sciencedirect.com/ science/article/pii/S2215098617300204 doi: https://doi.org/10.1016/j.jestch.2017.12.005 DOI: https://doi.org/10.1016/j.jestch.2017.12.005
Negasi, G., & Rotich, G. (2020). Manufacturing of bathroom wall tile composites from recycled low-density polyethylene reinforced with pineapple leaf fiber. International Journal of Polymer Science, 2020, 1-9. https://doi.org/10.1155/2020/2732571 DOI: https://doi.org/10.1155/2020/2732571
Neher, B., Hossain, R., Fatima, K., Gafur, M., Hossain, M., & Ahmed, F. (2020). Study of the physical, mechanical and thermal properties of banana fiber reinforced hdpe composites. Materials Sciences and Applications, 11, 245-262. https://doi.org/10.4236/msa.2020.114017 DOI: https://doi.org/10.4236/msa.2020.114017
Ofem, M., & Ubi, P. (2020). Properties of coconut fibres reinforced cashew nut shell resin. Umudike Journal of Engineering and Technology, 6, 40-48. https://doi.org/10.33922/j.ujetv6i14 DOI: https://doi.org/10.33922/j.ujet_v6i1_4
Satapathy, S., & Kothapalli, R. V. (2018). Mechanical, dynamic mechanical and thermal properties of banana fiber/recycled high density polyethylene biocomposites filled with flyash cenospheres. Journal of Polymers and the Environment, 26. https://doi.org/10.1007/s10924-017-0938-0 DOI: https://doi.org/10.1007/s10924-017-0938-0
Widiastuti, I., Saputra, H., Kusuma, S., & Harjanto, B. (2022). Mechanical and ther- mal properties of recycled high-density polyethylene/bamboo with different fiber loadings. Open Engineering, 12, 151-156. https://doi.org/10.1515/eng-2022-0010 DOI: https://doi.org/10.1515/eng-2022-0010
Worku, B. G., & Wubieneh, T. A. (2021). Mechanical properties of composite materials from waste poly(ethylene terephthalate) reinforced with glass fibers and waste window glass. International Journal of Polymer Science, 2021(1), 3320226. Retrieved from https://onlinelibrary.wiley.com: https://doi.org/10.1155/2021/3320226 DOI: https://doi.org/10.1155/2021/3320226
Yi, Z., Ammar, A., & Talib, J. (2022). Recycling of high density polyethylene plastics (hdpe) reinforced with coconut fibers for floor tiles. Journal of Pharmaceutical Negative Results, 21362143. Retrieved from https://www.pnrjournal.com/index.php/home/article/view/4893 https://doi.org/10.47750/pnr.2022.13.S07.295
Copyright (c) 2025 FUDMA JOURNAL OF SCIENCES
![Creative Commons License](http://i.creativecommons.org/l/by/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution 4.0 International License.
FUDMA Journal of Sciences