NEXUS OF WIREFRAMES, 3D MODEL, AND SIMULATION FOR THE DEVELOPMENT OF AN INTELLIGENT WASTE MANAGEMENT SYSTEM
DOI:
https://doi.org/10.33003/fjs-2024-0806-3020Keywords:
Intelligent. Waste Management, Wireframes, 3D modeling, Simulation Technologies, Sustainability, Integrated prototypingAbstract
The exponential growth in urban population has intensified the challenges of municipal waste management, necessitating innovative technological solutions. This research presents an integrated approach to developing a smart waste management system by integrating wireframes, 3D modeling, and simulation technologies. The study employs a three-phase methodology: utilizing wireframe prototyping for user interface design, enabling iterative development based on stakeholder feedback, implementing detailed 3D modeling of smart waste bins to visualize and optimize waste flow dynamics, and conducting comprehensive simulations to evaluate system performance under various scenarios. The simulation analysis compared multiple routing algorithms while monitoring real-time bin capacity through virtual sensors. Results demonstrate a 25% improvement in collection efficiency using dynamic routing compared to traditional fixed routes and a 30% reduction in overflow incidents through predictive capacity monitoring. The user-centered design approach, validated through wireframe testing with 50 participants, showed a 40% increase in system engagement compared to conventional waste management interfaces. Additionally, the 3D modeling phase identified critical design modifications that improved bin accessibility by 35% and reduced maintenance requirements by 20%. This research contributes to the growing knowledge of smart city solutions while providing practical insights for municipalities seeking to modernize their waste management. infrastructure. The proposed system offers a scalable, efficient approach to addressing urban waste challenges while promoting environmental sustainability. A limitation of the study is its reliance on simulation-based testing, which may not fully represent real-world operational complexities. A major challenge is implementation dependency on continuous stakeholder engagement and high reliance on technological infrastructures.
References
Achuba, F. I. (2018). Role of bitter leaf (Vernonia amygdalina) extract in prevention of renal toxicity induced by crude petroleum contaminated diets in rats. International Journal of Veterinary Science and Medicine, 6: 172-177.
Aganbi, E., Onyeukwu, O. B., Avwioroko, J. O. and Tonukari, N. J. (2017). Effect of fermentation on sensory, nutritional and antioxidant properties of mixtures of aqueous extracts of Hibiscus sabdariffa (zobo) and Raphia hookeri (raffia) wine. Nigerian Journal of Science and Environment, 15(1): 66 – 74.
Awuchi, C. G., & Okpala, C. O. R. (2022). Natural nutraceuticals, especially functional foods, their major bioactive components, formulation, and health
Batra, P. and Sharma, A. K. (2013): Anti-cancer potential of flavonoids: recent trends and future perspectives. 3Biotechnology, 3(6): 439-459. Doi:10.1007/s13205-013-0117-5.Springer
Bello, M. I., and Ibaba, H. E. (2020). Effect of crude ethanolic leaf extract of Phyllanthus amarus and highly active antiretroviral therapy (Tenofovir-Lamivudine Combination) in Wistar Rats. Direct Research Journal of Health and Pharmacology, 8 (5): 52-64. https://doi.org/10.26765/DRJHP101763090732
Bhakta, D. and Siva, R. (2012): Amelioration oxidative stress in bio-membranes and macromolecules by non-toxic dye from Marinda tinctoria (Roxb) roots. Food Chemistry Toxicology, 50:2062-9.
Breslin, A. (2017). The Chemical Composition of Green Plants. Sciencing, Leaf Group Ltd.
Cabrera, C., Artacho, R., and Giménez, R. (2006). Beneficial effects of phenolic compounds from red wine. Food Chemistry, 97(2): 351-36
Deepak, M. K., Surendra, S. K., Mahabaleshwar, V. H. and Hanhong, B. (2015). Significance of antioxidant potential of plants and its relevance to therapeutic applications. International Journal of Biological Science, 11(8): 982–991. Doi: 10.7150/ijbs.12096.
Deora, G. S., Nehra, M., and Sharma, V. (2021). Phyllanthus amarus Lin. Schum. & Thonn: A critical review on ethnobotanical, phytochemical and pharmacological potential. International Journal of Botany Studies, 6(3): 649-654.
Ekweogu, C. N., Ude, V. C., Nwankpa, P., Emmanuel, O., and Ugbogu, E. A. (2019). Ameliorative effect of aqueous leaf extract of Solanum aethiopicum on phenylhydrazine-induced anaemia and toxicity in rats.. Toxicol. Res., 36: 227-238.
Idowu, T. O., Ogundaini, A. O., Adesanya, S. A., Onawunmi, G. O., Osungunna, M. O., Obuotor, E. M., and Abegaz, B. M. (2016). Isolation and characterization of chemical constituents from Chrysophyllum albidum g. don-holl. stem-bark extracts and their antioxidant and antibacterial properties. African Journal of Traditional, Complementary, and Alternative Medicines, 13(5): 182–189. https://doi.org/10.21010/ajtcam.v13i5.24
Ijioma, S. N., Emmanuel, O., Nosiri, C. I., and Ugbogu, E. A. (2021). Evaluation of toxicity profile and pharmacological potentials of Aju Mbaise polyherbal extract in rats. Scientific African, 11, e00681. https://doi.org/10.1016/j.sciaf.2020.e00681
Lillehoj. H., Liu, Y., Calsamiglia, S., Mariano, E. F., Fang, C., Ron, L. C., Sungtaek, O and Cyril, G. G. (2018): Phytochemicals as antibiotic alternatives to promote growth and enhance host health. Veterinary Research 49. 76. Doi:10:1186/s13567-018-0562-6.
Mao, X., Wu, L. F., Guo, H. L., Chen, W. J., Cui, Y. P., Qi, Q., Li, S., Liang, W. Y., Yang, G. H., Shao, Y. Y., Zhu, D., She, G. M., You, Y., and Zhang, L. Z. (2016). The Genus Phyllanthus: An Ethnopharmacological, Phytochemical, and Pharmacological Review. Evidence-based complementary and alternative medicine, 2016: 7584952. https://doi.org/10.1155/2016/7584952
Moukette, B. M., Constant, A. P., Jacques, R. N., Cabral, P. N. B., Bravi, M. and Jeanne, N. (2015). In vitro antioxidant properties, free radicals scavenging activities of extracts and polyphenols composition of a non-timber forest product used as spice: Monodora myristica. Biological Research. 45 (15): 1-17. Doi: 10.1186/s40659-015-0003-1.
Oduola, T., Kakako, S. L., Tajudeen, M., Aiyelabegan, F., Olayinka, O. S. and Isah, L. O. (2018). Effect of intake of Phyllanthus amarus aqueous leaf extract on lipid peroxidation and some antioxidant factors in wistar rats. Journal of Pharmacognosy and Phytochemistry, 7(4): 2660-2666.
Ogunmoyole, T., Awodooju, M., Idowu, S. and Oreoluwa (2020). Phyllanthus amarus extract restored deranged biochemical parameters in rat model of hepatotoxicity and nephrotoxicity. Heliyon, Elsevier, 6:1-9.
Okiki, P. A., Olatunji, B. P., Adebimpe, A. S. E., and Comfort, O. (2015). A comparative study of nutritional and phytochemical composition of Phyllanthus amarus leaf and seed. American Eurasian Journal of Toxicological Sciences, 7(4), 321-327.
Onyeukwu, O. B., Ugbebor, G. C. and Iyeh, U. P (2024). Evaluation of amino acids composition of aqueous and ethanol extract of Phyllanthus niruri stem from Agbor, Nigeria. FUDMA Journal of Sciences, 8(4): 62 – 69. https://doi.org/10.33003/fjs-2024-0804-2555
Oyem, J. C., Chris-Ozoko, L. E., Enaohwo, M. T., Otabor, F. O., Okudayo, V. A. and Udi, O. A. (2021). Antioxidative properties of Ocimum gratissimum alters Lead acetate induced oxidative damage in lymphoid tissues and hematological parameters of adult Wistar rats. Toxicology Report, 8: 215-222.
Pinto, J. F. (2010). Nutracêuticos e alimentos funcionais [Nutraceuticals and functional foods] (1st ed.). Lidel – edições técnicas, lda.
Pisochi, A. M., and Negulescu, G. P. (2011). Methods for total antioxidants activity determination: A review. Biochemistry and Analytical Biochemistry, 1, 1-10.
Umar, I. S., Yusuf, A. A., Alawode, A. R., Obiekezie, C. I., Okunlola, B. M., Abdulrazaq, O. M., Ariyeloye, S. D. and Lawal, B. (2019). Phytochemical compositions and biochemical effect of Phyllanthus amarus in albino rat. GSC Biological and Pharmaceutical Sciences, 08(01): 128–133. https://doi.org/10.30574/gscbps.2019.8.1.0125
Vasthi, K. E. and Devarajan, N. (2012). In-vitro antioxidant and phytochemical analysis of Acalyphaalnifolia Klein Ex Willd. Journal of Pharmaceutical and Biological Sciences, 1: 43-47.
Verma, S., Sharma, S. and Garg, M. (2014). Phyllanthus amarus: A review. Journalpharmacognosy and phytochemistry, 3(2): 18-22.
Published
How to Cite
Issue
Section
FUDMA Journal of Sciences