BIOREMEDIATION OF WATER POLLUTANTS FROM WASTEWATER

  • Sani Ado Umar Mewar University, Rajasthan India
  • Ramgopal Dhakar Mewar University
  • Mubarak Sa'idu Mewar University
  • Mustapha Sulaiman Mewar University
  • Aminu Ahmed Wudil F C E (T) Bichi Kano Nigeria
  • Ahmad Sadi Shitu Mewar University
  • Abdullahi Rabiu Abdullahi Mewar University
  • Saminu Muhammad Saminu Mewar University
  • Pankaj Kumar Teli Mewar University
  • Umar Adamu Aliyu
Keywords: Bioremediation, Pollutants, Wastewater Treatments, Removal, Microbes

Abstract

Environmental pollution caused by xenobiotics and other persistent compounds has been recognized as a significant threat to both human health and the natural environment. These pollutants, which include heavy metals, polychlorinated biphenyls, plastics, and various agrochemicals, are toxic and resistant to biodegradation. Bioremediation is an emerging and effective method for cleaning contaminated environments by removing toxic waste. This technique utilizes a range of microorganisms, both aerobic and anaerobic, to treat polluted sites. Microorganisms are crucial in bioremediation as they degrade, detoxify, and immobilize hazardous wastes and pollutants, transforming them into less toxic forms. Depending on factors like cost, pollutant type, and concentration, bioremediation can be conducted ex-situ or in situ. Consequently, the appropriate bioremediation method is selected based on these factors. This review addresses the major issue of contaminants in water, including its sources, effects on the ecosystem, remediation strategies using different biological processes that change the pollutants into less hazardous, source and types of pollutants, the principle of bioremediation, bioremediation strategies, and technologies, microorganisms in bioremediation, case study and application, monitoring, and assessment of bioremediation process, environmental impacts and sustainability, future perspectives, and challenges.

References

A.E. Evans, J. Mateo-Sagasta, M. Qadir, E. Boelee, A. Ippolito, Agricultural water pollution: key knowledge gaps and research needs, Curr. Opin. Environ. Sustain. 36 (2019) 2027. DOI: https://doi.org/10.1016/j.cosust.2018.10.003

Abatenh, E., Gizaw, B., Tsegaye, Z., & Wassie, M. (2017). The role of microorganisms in bioremediation-A review. Open Journal of Environmental Biology, 2(1), 030-046. DOI: https://doi.org/10.17352/ojeb.000007

Ahmad, S., Tanweer, M. S., Mir, T. A., Alam, M., Ikram, S., & Sheikh, J. N. (2023). Antimicrobial gum based hydrogels as adsorbents for the removal of organic and inorganic pollutants. Journal of Water Process Engineering, 51, 103377. DOI: https://doi.org/10.1016/j.jwpe.2022.103377

Ajaz, M., Shakeel, S., & Rehman, A. (2020). Microbial use for azo dye degradationa strategy for dye bioremediation. International Microbiology, 23, 149-159. DOI: https://doi.org/10.1007/s10123-019-00103-2

Akhtar, N., Saeed, A. and Iqbal, M. (2019) Chlorella sorokiniana immobilized on the biomatrix of vegetable sponge of Luffa cylindrica: a new system to remove cadmium from contaminated aqueous medium. Bioresour Technol 88, 163165. DOI: https://doi.org/10.1016/S0960-8524(02)00289-4

Amin, A., Naik, A. R., Azhar, M., & Nayak, H. (2013). Bioremediation of different waste waters-a review. Continental Journal of Fisheries and Aquatic Science, 7(2), 7.

Ayilara, M. S., & Babalola, O. O. (2023). Bioremediation of environmental wastes: the role of microorganisms. Frontiers in Agronomy, 5, 1183691. DOI: https://doi.org/10.3389/fagro.2023.1183691

Azubuike, C. C., Chikere, C. B., & Okpokwasili, G. C. (2016). Bioremediation techniques classification based on site of application: principles, advantages, limitations, and prospects. World Journal of Microbiology and Biotechnology, 32(11), 180.

Bioremediation techniquesclassification based on site of application: principles, advantages, limitations and prospects." World Journal of Microbiology and Biotechnology 32 (2016): 1-18. DOI: https://doi.org/10.1007/s11274-016-2137-x

Bala, S., Garg, D., Thirumalesh, B., Sharma, M., Sridhar, K., Inbaraj, B., & Tripathi, M. (2022). Recent Strategies for Bioremediation of Emerging Pollutants: A Review for a Green and Sustainable Environment. Toxics, 10. https://doi.org/10.3390/toxics10080484. DOI: https://doi.org/10.3390/toxics10080484

Boopathy, R. "Factors limiting bioremediation technologies." Bioresource technology 74.1 (2019): 63-67. DOI: https://doi.org/10.1016/S0960-8524(99)00144-3

Ceci, A., Spinelli, V., Massimi, L., Canepari, S., & Persiani, A. (2020). Fungi and Arsenic: Tolerance and Bioaccumulation by Soil Saprotrophic Species. Applied Sciences. https://doi.org/10.3390/app10093218. DOI: https://doi.org/10.3390/app10093218

Cetin D, Donmez G (2019) Decolorization of reactive dyes by mixed cultures isolated from textile effluent under anaerobic conditions. Enzym Microb Technol 38:926930

Chaurasia, P., , N., Sharma, N., Kumari, S., Yadav, M., Singh, S., Mani, A., Yadava, S., & Bharati, S. (2022). Fungal assisted biotreatment of environmental pollutants with comprehensive emphasis on noxious heavy metals: Recent updates. Biotechnology and Bioengineering, 120, 57 - 81. https://doi.org/10.1002/bit.28268. DOI: https://doi.org/10.1002/bit.28268

Cheema, H. A. (2023). A Review on Bioremediation Emerging Technology for Treatment of Radionuclide Waste. Journal of Modern Agriculture and Biotechnology. DOI: https://doi.org/10.53964/jmab.2023002

Chen L, Tsui M, Lam J, Wang Q, Hu C, Wai O, Zhou B, Lam P. Contamination by perfluoroalkyl substances and microbial community structure in Pearl River Delta sediments. Environ Poll 2019;245:218 25. https://doi.org/10.1016/j.envpol.2018.11.005 DOI: https://doi.org/10.1016/j.envpol.2018.11.005

Cheng, S.Y., Show, P., Lau, F., Chang, J. and Ling, T.C. (2019) New prospects for modified algae in heavy metal adsorption. Trends Biotechnol 37, 12551268. DOI: https://doi.org/10.1016/j.tibtech.2019.04.007

Coelho, L. M., Rezende, H. C., Coelho, L. M., de Sousa, P. A., Melo, D. F., & Coelho, N. M. (2015). Bioremediation of polluted waters using microorganisms. Advances in Bioremediation of Wastewater and Polluted Soil, 10, 60770. DOI: https://doi.org/10.5772/60770

DAndrea MA, Reddy GK. Crude oil spill exposure and human health risks. J Occup Environ Med 2014;56:102941. https://doi.org/10.1 097/JOM.0000000000000217 DOI: https://doi.org/10.1097/JOM.0000000000000217

Darmawati, Sri, et al. "Pathogenicity scoring system for selection of bacterial consortium formulated as bioremediation agent of Hospital Wastewater in central Java." IOP Conference Series: Earth and Environmental Science. Vol. 707. No. 1. IOP Publishing, 2021. DOI: https://doi.org/10.1088/1755-1315/707/1/012003

Deshmukh, R., Khardenavis, A. A., & Purohit, H. J. (2016). Diverse metabolic capacities of fungi for bioremediation. Indian journal of microbiology, 56(3), 247-264. DOI: https://doi.org/10.1007/s12088-016-0584-6

Dong, H., Guo, T., Zhang, W., Ying, H., Wang, P., Wang, Y., & Chen, Y. (2019). Biochemical characterization of a novel azoreductase from Streptomyces sp.: Application in eco-friendly decolorization of azo dye wastewater. International journal of biological macromolecules. https://doi.org/10.1016/j.ijbiomac.2019.08.196 . DOI: https://doi.org/10.1016/j.ijbiomac.2019.08.196

Doria et al. (2012) used an outdoor photobioreactor with high light intensity (from 100 to 1500 mol m-2 s -1 ) under natural light/dark cycles and improved nitrate removal efficiency for S. accutus over 10-fold (6.26 mg L-1 d-1.

Dua, M., A. Singh, N. Sethunathan, and A. Johri. "Biotechnology and bioremediation: successes and limitations." Applied microbiology and biotechnology 59 (2020): 143-152. DOI: https://doi.org/10.1007/s00253-002-1024-6

Dusengemungu, L., Kasali, G., Gwanama, C., and Ouma, K. O. (2020). Recent advances in biosorption of copper and cobalt by filamentous fungi. Front. Microbiol. 11. doi: 10.3389/fmicb.2020.582016 DOI: https://doi.org/10.3389/fmicb.2020.582016

E. Nazarzadeh Zare, A. Mudhoo, M. Ali Khan, M. Otero, Z.M.A. Bundhoo, M. Patel, A. Srivastava, C. Navarathna, T. Mlsna, D. Mohan, Smart Adsorbents for Aquatic Environmental Remediation, Small. 17 (2021) 2007840.

E. Nazarzadeh Zare, A. Mudhoo, M. Ali Khan, M. Otero, Z.M.A. Bundhoo, M. Patel, A. Srivastava, C. Navarathna, T. Mlsna, D. Mohan, Smart Adsorbents for Aquatic Environmental Remediation, Small. 17 (2021) 2007840. DOI: https://doi.org/10.1002/smll.202007840

E. Nazarzadeh Zare, M. Mansour Lakouraj, J. Alizadeh Feremi, Rhodamine B Dye Removal from Aqueous Solutions Using Poly (N-vinylpyrrolidone-co-maleic anhydride)/Rice Husk Biocompatible Nanocomposite: Isothermal, Kinetics and Thermodynamic Studies, Iran. J. Polym. Sci. Technol. 31 (2018) 8192.

E.N. Zare, A. Motahari, M. Sillanp, Nanoadsorbents based on conducting polymer nanocomposites with main focus on polyaniline and its derivatives for removal of heavy metal ions/dyes: A review, Environ. Res. 162 (2018) 173195. DOI: https://doi.org/10.1016/j.envres.2017.12.025

E.N. Zare, A. Mudhoo, M.A. Khan, M. Otero, Z.M.A. Bundhoo, C. Navarathna, M. Patel, A. Srivastava, C.U. Pittman Jr, T. Mlsna, Water decontamination using bio-based, chemically functionalized, doped, and ionic liquid-enhanced adsorbents, Environ. Chem. Lett. 19 (2021) 30753114 DOI: https://doi.org/10.1007/s10311-021-01207-w

E.N. Zare, M.M. Lakouraj, N. Kasirian, Fabrication and Characterization of Dextrin-g-Polypyrrole/Graphene Oxide Nanocomposite for Effective Removal of Pb (II) and Methylene Blue Dye from Aqueous Solutions, Iran. J. Polym. Sci. Technol.(Persian). 30 (2017) 447462.

E.N. Zare, M.M. Lakouraj, N. Kasirian, Fabrication and Characterization of Dextrin-g-Polypyrrole/Graphene Oxide Nanocomposite for Effective Removal of Pb (II) and Methylene Blue Dye from Aqueous Solutions, Iran. J. Polym. Sci. Technol.(Persian). 30 (2017) 447462.

F.R. Abe, J.N. Mendona, L.A.B. Moraes, G.A.R. d. Oliveira, C. Gravato, A.M.V.M. Soares, D.P. d. Oliveira, Toxicological and behavioral responses as a tool to assess the effects of natural and synthetic dyes on zebrafish early life, Chemosphere. 178 (2017) 282290. DOI: https://doi.org/10.1016/j.chemosphere.2017.03.030

Fayyaz, M., Chew, K., Show, P., Ling, T., Ng, I., & Chang, J. (2020). Genetic engineering of microalgae for enhanced biorefinery capabilities.. Biotechnology advances, 107554 . https://doi.org/10.1016/j.biotechadv.2020.107554. DOI: https://doi.org/10.1016/j.biotechadv.2020.107554

G.oswami, R.K., Mehariya, S., Verma, P., Lavecchia, R. and Zuorro, A. (2020b) Microalgae-based biorefineries for sustainable resource recovery from wastewater. J Water Process Eng 40, 101747. DOI: https://doi.org/10.1016/j.jwpe.2020.101747

Goswami, R. K., Agrawal, K., Shah, M. P., & Verma, P. (2022). Bioremediation of heavy metals from wastewater: a current perspective on microalgaebased future. Letters in Applied Microbiology, 75(4), 701-717. DOI: https://doi.org/10.1111/lam.13564

H.D. Beyene, T.G. Ambaye, Application of sustainable nanocomposites for water purification process, in: Sustain. Polym. Compos. Nanocomposites, 2019: pp. 387412 [10]. DOI: https://doi.org/10.1007/978-3-030-05399-4_14

Hamdan, A., Abd-El-Mageed, H., & Ghanem, N. (2021). Biological treatment of hazardous heavy metals by Streptomyces rochei ANH for sustainable water management in agriculture. Scientific Reports, 11. https://doi.org/10.1038/s41598-021-88843-y. DOI: https://doi.org/10.1038/s41598-021-88843-y

He Y, Zhang Y, Li T et al. High-concentration cod wastewater treatment with simultaneous removal of nitrogen and phosphorus by a novel candida tropicalis stain pny2013: removal capability and mechanism. SSRN Journal 2021, https://doi.org/10.2139/ssrn.3962873 DOI: https://doi.org/10.2139/ssrn.3962873

Hogue C. PFAS targeted in legislation passed by US House of Representatives, 2021 [displayed 3 August 2023]. Available at https://cen.acs.org/environment/persistent-pollutants/PFAS .

Isik M, Sponza DT (2021) Effect of oxygen on decolorization of azo dyes by E. coli and Psedomonas sp. and fate of aromatic amines. Process Biochem 38(8):11831192 DOI: https://doi.org/10.1016/S0032-9592(02)00282-0

Jain, Marut, Sadaf Aiman Khan, Komal Sharma, Prashant Ram Jadhao, Kamal Kishore Pant, Zyta Maria Ziora, and Mark AT Blaskovich. "Current perspective of innovative strategies for bioremediation of organic pollutants from wastewater." Bioresource technology 344 (2022): 126305. DOI: https://doi.org/10.1016/j.biortech.2021.126305

Kim, K., Zagalskaya, A., Ng, J. L., Hong, J., Alexandrov, V., Pham, T. A., & Su, X. (2023). Coupling nitrate capture with ammonia production through bifunctional redox-electrodes. Nature communications, 14(1), 823 DOI: https://doi.org/10.1038/s41467-023-36318-1

Kong, W., Kong, J., Ma, J., Lyu, H., Feng, S., Wang, Z., Yuan, P., & Shen, B. (2021). Chlorella vulgaris cultivation in simulated wastewater for the biomass production, nutrients removal and CO2 fixation simultaneously.. Journal of environmental management, 284, 112070 . https://doi.org/10.1016/j.jenvman.2021.112070. DOI: https://doi.org/10.1016/j.jenvman.2021.112070

Kour, D., Kaur, T., Devi, R., Yadav, A., Singh, M., Joshi, D., Singh, J., Suyal, D., Kumar, A., Rajput, V., Yadav, A., Singh, K., Singh, J., Sayyed, R., Arora, N., & Saxena, A. (2021). Beneficial microbiomes for bioremediation of diverse contaminated environments for environmental sustainability: present status and future challenges. Environmental Science and Pollution Research, 28, 24917 - 24939. https://doi.org/10.1007/s11356-021-13252-7 . DOI: https://doi.org/10.1007/s11356-021-13252-7

Kouilov, X., Pernicov, I., Sedl, K., Musilov, J., Sedlek, P., Kalina, M., Koller, M., & Obrua, S. (2020). Production of polyhydroxyalkanoates (PHA) by a thermophilic strain of Schlegelella thermodepolymerans from xylose rich substrates.. Bioresource technology, 315, 123885. https://doi.org/10.1016/j.biortech.2020.123885. DOI: https://doi.org/10.1016/j.biortech.2020.123885

Kshirsagar, A. D. (2013). Bioremediation of wastewater by using microalgae: an experimental study. International Journal of Life Science Biotechnology and Pharma Research, 2(3), 339-346.

LaFond, J. A., Hatzinger, P. B., Guelfo, J. L., Millerick, K., & Jackson, W. A. (2023). Bacterial transformation of per-and poly-fluoroalkyl substances: a review for the field of bioremediation. Environmental Science: Advances. DOI: https://doi.org/10.1039/D3VA00031A

Laraib, N., Manzoor, M., Javid, A., Jabeen, F., Bukhari, S., Ali, W., & Hussain, A. (2021). Mixotrophic cultivation of Chlorella vulgaris in sugarcane molasses preceding nitrogen starvation: Biomass productivity, lipid content, and fatty acid analyses. Environmental Progress & Sustainable Energy, 40. https://doi.org/10.1002/ep.13625 DOI: https://doi.org/10.1002/ep.13625

Liang, L., Xi, F., Tan, W., Meng, X., Hu, B., & Wang, X. (2021). Review of organic and inorganic pollutants removal by biochar and biochar-based composites. Biochar, 3, 255-281. DOI: https://doi.org/10.1007/s42773-021-00101-6

Lim X. Can microbes save us from PFAS? ACS Cent Sci 2021;7:36. https://doi.org/10.1021/acscentsci.1c00013 DOI: https://doi.org/10.1021/acscentsci.1c00013

Li, D., Zhai, Y., Lei, Y., Li, J., Teng, Y., Lu, H., Xia, X., Yue, W., & Yang, J. (2020). Spatiotemporal evolution of groundwater nitrate nitrogen levels and potential human health risks in the Songnen Plain, Northeast China.. Ecotoxicology and environmental safety, 208, 111524 . https://doi.org/10.1016/j.ecoenv.2020.111524 . DOI: https://doi.org/10.1016/j.ecoenv.2020.111524

Llamas, M., Magdalena, J., TomsPej, E., & GonzlezFernndez, C. (2020). Microalgae-based anaerobic fermentation as a promising technology for producing biogas and microbial oils. Energy, 206, 118184. https://doi.org/10.1016/j.energy.2020.118184 DOI: https://doi.org/10.1016/j.energy.2020.118184

Lopez-Serna, R., Jurado, A., V azquez-Sune, E., Carrera, J., Petrovic, M., Barcelo, D., 2013. Occurrence of 95 pharmaceuticals and transformation products in urban.

M. Abdul Kapur, M. Yuvarani, G. Shiyamala, S.S. Sudha, S. Janaki, J. Prasanna, & Amzad Basha Kolar. (2024). The Role Of Microbes In Environmental Bioremediation: Novel Approaches For Pollution Control. Journal of Advanced Zoology, 45(2), 377382. https://doi.org/10.53555/jaz.v45i2.3867.

M. Syafrudin, R.A. Kristanti, A. Yuniarto, T. Hadibarata, J. Rhee, Pesticides in Drinking Water A Review, (2021). DOI: https://doi.org/10.3390/ijerph18020468

Mohamed, Z., Alamri, S., & Hashem, M. (2021). Simultaneous biodegradation of harmful Cylindrospermopsis raciborskii and cylindrospermopsin toxin in batch culture by single Bacillus strain. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-021-16062-z . DOI: https://doi.org/10.21203/rs.3.rs-125002/v1

Mooralitharan, S., Hanafiah, Z., Manan, T., Muhammad-Sukki, F., WanMohtar, W., & Mohtar, W. (2023). Vital Conditions to Remove Pollutants from Synthetic Wastewater Using Malaysian Ganoderma lucidum. Sustainability. https://doi.org/10.3390/su15043819 . DOI: https://doi.org/10.3390/su15043819

Moreno-Garrido, I., Campana, O., Lubian, L.M. and Blasco, J. (2020) Calcium alginate immobilized marine microalgae: experiments on growth and short-term heavy metal accumulation. Mar Pollut Bull 51, 823829

Muttaleb, W., & Ali, Z. (2022). BIOREMEDIATION AN ECO-FRIENDLY METHOD FOR ADMINISTRATION OF ENVIRONMENTAL CONTAMINANTS. MINAR International Journal of Applied Sciences and Technology. https://doi.org/10.47832/2717-8234.11.3 DOI: https://doi.org/10.47832/2717-8234.11.3

N.J. Ashbolt, Microbial Contamination of Drinking Water and Human Health from Community Water Systems, Curr. Environ. Heal. Reports. 2 (2019) 95106.

Ogugbue CJ, Sawidis T (2020) Bioremediation and detoxification of synthetic wastewater containing triarylmethane dyes by Aeromonas hydrophila isolated from industrial effluent. Biotechnol Res Int 11:111

Ola IO, Akintokun AK, Akpan I, Omomowo IO, Areo VO (2019) Aerobic decolourization of two reactive azo dyes under varying carbon and nitrogen source by Bacillus cereus. Afr J Biotechnol 9(5):672677 DOI: https://doi.org/10.5897/AJB09.1374

Oyebamiji, O.O., Boeing, W.J., Holguin, F.O., Ilori, O. and Amund, O. (2019) Green microalgae cultured in textile wastewater for biomass generation and biodetoxification of heavy metals and chromogenic substances. Bioresour Technol Rep 7, 100247 DOI: https://doi.org/10.1016/j.biteb.2019.100247

Ozer A, Akkaya G, Turabik M (2021) The removal of acid red 274 from wastewater: combined biosorption and biocoagulation with Spirogyra rhizopus. Dyes Pigments 71(2):8389 DOI: https://doi.org/10.1016/j.dyepig.2005.06.004

Richards, R.G. and Mullins, B.J. (2013) Using microalgae for combined lipid production and heavy metal removal from leachate. Ecol Modell 249, 5967 DOI: https://doi.org/10.1016/j.ecolmodel.2012.07.004

S. Ben Hamida, S. Iftekhar, I. Ambat, V. Srivastava, M. Sillanp, Z. Amri, N. Ladhari, Dry and wet ozonation of denim: Degradation products, reaction mechanism, toxicity and cytotoxicity assessment, Chemosphere. 203 (2018) 514520. DOI: https://doi.org/10.1016/j.chemosphere.2018.03.199

S. Iftekhar, A. Deb, G. Heidari, M. Sillanp, V.-P. Lehto, B. Doshi, M. Hosseinzadeh, E.N. Zare, A review on the effectiveness of nanocomposites for the treatment and recovery of oil spill, Environ. Sci. Pollut. Res. 30 (2023) 1694716983. DOI: https://doi.org/10.1007/s11356-022-25102-1

S.K. Verma, Sources of Nuclear Pollutants and Their Controls, Energy, Environ. Sustain. (2019) 139147. DOI: https://doi.org/10.1007/978-981-13-3281-4_9

Samal, D.P.K., Sukla, L.B., Pattanaik, A. and Pradhan, D. (2020) Role of microalgae in treatment of acid mine drainage and recovery of valuable metals. Mater Today Proc 30, 346350. DOI: https://doi.org/10.1016/j.matpr.2020.02.165

Saravanan, A., Kumar, P. S., Govarthanan, M., George, C. S., Vaishnavi, S., Moulishwaran, B., et al. (2021). Adsorption characteristics of magnetic nanoparticles coated mixed fungal biomass for toxic Cr(VI) ions in aquatic environment. Chemosphere 267, 129226. https://doi.org/10.1016/j.chemosphere.2020.129226 DOI: https://doi.org/10.1016/j.chemosphere.2020.129226

Schaider LA, Balan SA, Blum A, Andrews DQ, Strynar MJ, Dickinson ME, Lunderberg DM, Lang JR, Peaslee GF. Fluorinated compounds in U.S. fast food packaging. Environ Sci Technol Lett 2017;4:10511. doi: 10.1021/acs.estlett.6b00435 DOI: https://doi.org/10.1021/acs.estlett.6b00435

Senevirathna STMLD, Krishna KCB, Mahinroosta R, Sathasivan A. Comparative characterization of microbial communities that inhabit PFAS-rich contaminated sites: A case-control study. J Hazard Mater 2022;423:126941. https://doi.org/10.1016/j.jhazmat.2021.126941 DOI: https://doi.org/10.1016/j.jhazmat.2021.126941

Shen, L., Wang, J., Li, Z., Fan, L., Chen, R., Wu, X., Li, J. and Zeng, W. (2020) A high-efficiency Fe2O3@ microalgae composite for heavy metal removal from aqueous solution. J Water Process Eng 33, 101026. DOI: https://doi.org/10.1016/j.jwpe.2019.101026

Shittu, A. R., Iwaloye, O. F., Ojewole, A. E., Rabiu, A. G., Amechi, M. O., & Herve, O. F. (2023). The effects of per- and polyfluoroalkyl substances on environmental and human microorganisms and their potential for bioremediation. Archives of Industrial Hygiene and Toxicology, 74(3), 167-178. DOI: https://doi.org/10.2478/aiht-2023-74-3708

Singh, P., Singh, V. K., Singh, R., Borthakur, A., Madhav, S., Ahamad, A., ...& Mishra, P. K. (2020). Bioremediation: a sustainable approach for management of environmental contaminants. In Abatement of Environmental Pollutants (pp. 1-23). Elsevier. DOI: https://doi.org/10.1016/B978-0-12-818095-2.00001-1

Smith, J., Gaito, S., & Koons, B. (2023). Bioventing revisited: efficacy of enhanced biodegradation for sites with mobile LNAPL. Quarterly Journal of Engineering Geology and Hydrogeology. https://doi.org/10.1144/qjegh2022-085 . DOI: https://doi.org/10.1144/qjegh2022-085

Sudarshan, S., Harikrishnan, S., RathiBhuvaneswari, G., Alamelu, V., Aanand, S., Rajasekar, A., & Govarthanan, M. (2023). Impact of textile dyes on human health and bioremediation of textile industry effluent using microorganisms: current status and future prospects. Journal of applied microbiology, 134(2), lxac064. DOI: https://doi.org/10.1093/jambio/lxac064

Sun, G., Reynolds, E., & Belcher, A. (2020). Using yeast to sustainably remediate and extract heavy metals from waste waters. Nature Sustainability, 3, 303-311. https://doi.org/10.1038/s41893-020-0478-9 DOI: https://doi.org/10.1038/s41893-020-0478-9

Tang CY, Fu QS, Criddle CS, Leckie JO. Effect of flux (transmembrane pressure) and membrane properties on fouling and rejection of reverse osmosis and nanofiltration membranes treating perfluorooctane sulfonate containing wastewater. Environ Sci Technol 2017;41:2008 14. https://doi.org//10.1021/es062052f DOI: https://doi.org/10.1021/es062052f

Thangavelu K, Sundararaju P, Srinivasan N et al. Simultaneous lipid production for biodiesel feedstock and decontamination of sago processing wastewater using Candida tropicalis ASY2. Biotechnol Biofuels 2020;13:35. https://doi.org/10.1186/s13068-020-01676-1 DOI: https://doi.org/10.1186/s13068-020-01676-1

Wartell B, Boufadel M, Rodriguez-Freire L. An effort to understand and improve the anaerobic biodegradation of petroleum hydrocarbons: a literature review. Int Biodeterior Biodegrad 2021;157:105156. https://doi.org/10.1016/j.ibiod.2020.105156 DOI: https://doi.org/10.1016/j.ibiod.2020.105156

Tran, H., Lin, C., Bui, X., Ngo, H., Cheruiyot, N., Hoang, H., & Vu, C. (2021). Aerobic composting remediation of petroleum hydrocarbon-contaminated soil. Current and future perspectives. The Science of the total environment, 753, 142250 . https://doi.org/10.1016/j.scitotenv.2020.142250 . DOI: https://doi.org/10.1016/j.scitotenv.2020.142250

Tripathi, M., Singh, S., Pathak, S., Kasaudhan, J., Mishra, A., Bala, S., ... & Pathak, N. (2023). Recent strategies for the remediation of textile dyes from wastewater: a systematic review. Toxics, 11(11), 940. DOI: https://doi.org/10.3390/toxics11110940

Uqab, B., Mudasir, S., & Nazir, R. (2016). Review on bioremediation of pesticides. J. Bioremediat. Biodegrad, 7(2), 10-4172.

Wang, L., Rinklebe, J., Tack, F. M., & Hou, D. (2021). A review of green remediation strategies for heavy metal contaminated soil. Soil Use and Management, 37(4), 936-963. DOI: https://doi.org/10.1111/sum.12717

Wu, M., Wu, J., Zhang, X., & Ye, X. (2019). Effect of bioaugmentation and biostimulation on hydrocarbon degradation and microbial community composition in petroleum-contaminated loessal soil. Chemosphere,237,124456 . https://doi.org/10.1016/j.chemosphere.2019.124456. DOI: https://doi.org/10.1016/j.chemosphere.2019.124456

Y. Hu, G. Liu, J. Rood, L. Liang, G.A. Bray, L. de Jonge, B. Coull, J.D. Furtado, L. Qi, P. Grandjean, Q. Sun, Perfluoroalkyl substances and changes in bone mineral density: A prospective analysis in the POUNDS-LOST study, Environ. Res. 179 (2019) 108775. DOI: https://doi.org/10.1016/j.envres.2019.108775

Yang, X., Zhao, Z., Yu, Y., Shimizu, K., Zhang, Z., Lei, Z. and Lee, D.-J. (2020) Enhanced biosorption of Cr (VI) from synthetic wastewater using algal-bacterial aerobic granular sludge: batch experiments, kinetics and mechanisms. Sep Purif Technol 251, 117323 DOI: https://doi.org/10.1016/j.seppur.2020.117323

Zhuo, R., & Fan, F. (2021). A comprehensive insight into the application of white rot fungi and their lignocellulolytic enzymes in the removal of organic pollutants.. The Science of the total environment, 778, 146132 . https://doi.org/10.1016/j.scitotenv.2021.146132. DOI: https://doi.org/10.1016/j.scitotenv.2021.146132

Zhang, X., Song, Z., Tang, Q., Wu, M., Zhou, H., Liu, L., & Qu, Y. (2021). Performance and microbial community analysis of bioaugmented activated sludge for nitrogen-containing organic pollutants removal. Journal of environmental sciences, 101, 373-381 . https://doi.org/10.1016/J.JES.2020.09.002 DOI: https://doi.org/10.1016/j.jes.2020.09.002

Published
2025-01-31
How to Cite
UmarS. A., DhakarR., Sa’iduM., SulaimanM., WudilA. A., ShituA. S., AbdullahiA. R., SaminuS. M., TeliP. K., & AliyuU. A. (2025). BIOREMEDIATION OF WATER POLLUTANTS FROM WASTEWATER. FUDMA JOURNAL OF SCIENCES, 9(1), 163 - 179. https://doi.org/10.33003/fjs-2025-0901-2988