RECENT REVIEW OF THE QUECHERS SAMPLE PREPARATION METHOD FOR FOOD AND ENVIRONMENTAL SAMPLE ANALYSIS

  • Isah Yusuf Shinkafi Federal University Ditsin-ma Katsina
  • Abubakar Lawal
  • Nura Suleiman Gwaram
  • Ahmed Lawal Mashi
Keywords: QuEChERS, Preparation, Analysis

Abstract

Creating reliable, environmentally responsible, and effective processes that ensure the traceability, safety, and caliber of their results is one of the main challenges facing researchers doing multi-residue analysis. The QuEChERS  which stands for Quick, Easy, Cheap, Effective, Rugged, and Safe method  has shown itself to be highly adaptable, yielding positive outcomes with a range of analytes. This method allows for versatility in the choice of solvents, salts, and buffers for salting-out partitioning, as well as the use of various sorbents throughout the cleanup process. QuEChERS is a more environmentally friendly sample preparation technique that fits perfectly with analytical chemistry's rising emphasis on sustainability. This review paper's goal is to illustrate the primary applications of the QuEChERS sample preparation method, with a focus on food and environmental investigations. It also covers important improvements in the history of sample preparation methods and offers insights into the classes of substances that have been effectively evaluated with this methodology.

References

Acosta-Dacal, A., Rial-Berriel, C., Daz-Daz, R., del Mar Bernal-Surez, M., & Luzardo, O. P. (2021). Optimization and validation of a QuEChERS-based method for the simultaneous environmental monitoring of 218 pesticide residues in clay loam soil. Science of the Total Environment, 753, 142015. DOI: https://doi.org/10.1016/j.scitotenv.2020.142015

Aissaoui, Y., Jimnez-Skrzypek, G., Gonzlez-Slamo, J., Trabelsi-Ayadi, M., Ghorbel-Abid, I., & Hernndez-Borges, J. (2024). Determination of Multiclass Antibiotics in Fish Muscle Using a QuEChERS-UHPLC-MS/MS Method. Foods, 13(7), Pp 1081. DOI: https://doi.org/10.3390/foods13071081

Amin, M., Sharif, S., Akram, S., Muhammad, G., Amin, S., Ashraf, R., & Mushtaq, M. (2023). A dispersive liquidliquid microextraction followed by reversephase highperformance liquid chromatography for QuEChERS determination of chlorogenic acid. Phytochemical Analysis, 34(1), Pp 3039. https://doi.org/10.1002/pca.3174 DOI: https://doi.org/10.1002/pca.3174

Andjelkovi, D., & Brankovi, M. (2023). One-step extraction versus QuEChERS for pesticide analysis in selected fruits and vegetables. Macedonian Journal of Chemistry and Chemical Engineering, 42(2), Pp 195201. DOI: https://doi.org/10.20450/mjcce.2023.2762

Antonio, M., Alcaraz, M. R., & Culzoni, M. J. (2024). Advances on multiclass pesticide residue determination in citrus fruits and citrus-derived products A critical review. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-024-34525-x DOI: https://doi.org/10.1007/s11356-024-34525-x

Arena, A., Zoccali, M., Ferracane, A., & Mondello, L. (2024). Improvements in materials for microextraction techniques in pesticide analysis of fruit juices: Update of the last decade. TrAC Trends in Analytical Chemistry, 117911. DOI: https://doi.org/10.1016/j.trac.2024.117911

Bacha, S. A. S., Li, Y., Nie, J., Xu, G., Han, L., & Farooq, S. (2023). Comprehensive review on patulin and Alternaria toxins in fruit and derived products. Frontiers in Plant Science, 14, 1139757. DOI: https://doi.org/10.3389/fpls.2023.1139757

Bai, B., Guo, Y., Meng, S., Gong, Y., Bo, T., Zhang, J., Shen, D., Fan, S., & Yang, Y. (2024). Determination of insecticide residues in beverages based on MIL-100 (Fe) dispersive solid-phase microextraction in combination with dispersive liquid-liquid microextraction followed by HPLC-MS/MS. Food Chemistry, 453, 139660. DOI: https://doi.org/10.1016/j.foodchem.2024.139660

Bakanov, N., Honert, C., Eichler, L., Lehmann, G. U., Schulz, R., & Brhl, C. A. (2023). A new sample preparation approach for the analysis of 98 current-use pesticides in soil and herbaceous vegetation using HPLC-MS/MS in combination with an acetonitrile-based extraction. Chemosphere, 331, 138840. DOI: https://doi.org/10.1016/j.chemosphere.2023.138840

Baroudi, F., Al-Alam, J., Chimjarn, S., Haddad, K., Fajloun, Z., Delhomme, O., & Millet, M. (2022). Use of Helix aspersa and Pinus nigra as Bioindicators to Study Temporal Air Pollution in Northern Lebanon. International Journal of Environmental Research, 16(1), Pp 4. https://doi.org/10.1007/s41742-021-00385-3 DOI: https://doi.org/10.1007/s41742-021-00385-3

Berenguer, C. V., Garca-Cansino, L., Garca, M. ., Marina, M. L., Cmara, J. S., & Pereira, J. A. (2023). Exploring the Potential of Microextraction in the Survey of Food Fruits and Vegetable Safety. Applied Sciences, 13(12), Pp 7117. DOI: https://doi.org/10.3390/app13127117

Bernardi, G., Kemmerich, M., Adaime, M. B., Prestes, O. D., & Zanella, R. (2020). Miniaturized QuEChERS method for determination of 97 pesticide residues in wine by ultra-high performance liquid chromatography coupled with tandem mass spectrometry. Analytical Methods, 12(21), Pp 26822692. DOI: https://doi.org/10.1039/D0AY00744G

Bessaire, T., Ernest, M., Christinat, N., Carrres, B., Panchaud, A., & Badoud, F. (2021). High resolution mass spectrometry workflow for the analysis of food contaminants: Application to plant toxins, mycotoxins and phytoestrogens in plant-based ingredients. Food Additives & Contaminants: Part A, 38(6), Pp 978996. https://doi.org/10.1080/19440049.2021.1902575 DOI: https://doi.org/10.1080/19440049.2021.1902575

Boti, V., Martinaiou, P., Gkountouras, D., & Albanis, T. (2024). Target and suspect screening approaches for the identification of emerging and other contaminants in fish feeds using high resolution mass spectrometry. Environmental Research, 251, 118739. DOI: https://doi.org/10.1016/j.envres.2024.118739

Brandi, J., Siragusa, G., Robotti, E., Marengo, E., & Cecconi, D. (2024). Analysis of veterinary drugs and pesticides in food using liquid chromatography-mass spectrometry. TrAC Trends in Analytical Chemistry, 117888. DOI: https://doi.org/10.1016/j.trac.2024.117888

Bruzzoniti, M. C., Checchini, L., De Carlo, R. M., Orlandini, S., Rivoira, L., & Del Bubba, M. (2014). QuEChERS sample preparation for the determination of pesticides and other organic residues in environmental matrices: A critical review. Analytical and Bioanalytical Chemistry, 406(17), 40894116. https://doi.org/10.1007/s00216-014-7798-4 DOI: https://doi.org/10.1007/s00216-014-7798-4

Caratti, A., Squara, S., Liberto, E., Bicchi, C., Reichenbach, S. E., Raquel, M. C. F., Luis, C. R., & Cordero, C. (2022). Study of the high quality extra-virgin olive oils volatilome: Potentiality of" comprehensive" two-dimensional gas chromatography for the discrimination of olive cultivation methodologies. In 7 MS Food Day Book of Abstracts (pp. 145148). Divisione Spettrometria di Massa-Societ Chimica Italiana. https://iris.unito.it/handle/2318/1876760

Carro, N., Fernndez, R., Cobas, J., Garca, I., Ignacio, M., & Mouteira, A. (2024). Optimization of a modified Captiva EMR-lipid method based on micro-matrix solid-phase dispersion coupled with gas chromatography-mass spectrometry for the determination of nine bisphenols in mussel samples. Analytical Methods. https://pubs.rsc.org/en/content/articlehtml/2024/ay/d4ay00738g DOI: https://doi.org/10.2139/ssrn.4484030

Casado, N., Morante-Zarcero, S., & Sierra, I. (2022). Application of the QuEChERS strategy as a useful sample preparation tool for the multiresidue determination of pyrrolizidine alkaloids in food and feed samples: A critical overview. Applied Sciences, 12(9), 4325. DOI: https://doi.org/10.3390/app12094325

Cebi, N., Manav, O. G., & Olgun, E. O. (2021). Analysis of pesticide residues in hazelnuts using the QuEChERS method by liquid chromatographytandem mass spectrometry. Microchemical Journal, 166, 106208. DOI: https://doi.org/10.1016/j.microc.2021.106208

Chen, M., Chen, L., Pan, L., Liu, R., Guo, J., Fan, M., Wang, X., Liu, H., & Liu, S. (2022). Simultaneous analysis of multiple pesticide residues in tobacco by magnetic carbon composite-based QuEChERS method and liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. Journal of Chromatography A, 1668, 462913. DOI: https://doi.org/10.1016/j.chroma.2022.462913

Christodoulou, M. C., Christou, A., Stavrou, I. J., & Kapnissi-Christodoulou, C. P. (2023). Evaluation of different extraction procedures for the quantification of seven cannabinoids in cannabis-based edibles by the use of LC-MS. Journal of Food Composition and Analysis, 115, 104915. DOI: https://doi.org/10.1016/j.jfca.2022.104915

Collimore, W. A., & Bent, G.-A. (2020). A newly modified QuEChERS method for the analysis of organochlorine and organophosphate pesticide residues in fruits and vegetables. Environmental Monitoring and Assessment, 192(2), 128. https://doi.org/10.1007/s10661-020-8072-1 DOI: https://doi.org/10.1007/s10661-020-8072-1

da Silva, A. A., Fagnani, E., & Cristale, J. (2023). A modified QuEChERS method for determination of organophosphate esters in milk by GC-MS. Chemosphere, 334, 138974. DOI: https://doi.org/10.1016/j.chemosphere.2023.138974

Deng, Q., Liu, Y., Liu, D., Meng, Z., & Hao, X. (2024). Development of a Design of Experiments (DOE) assistant modified QuEChERS method coupled with HPLC-MS/MS simultaneous determination of twelve lipid-soluble pesticides and four metabolites in chicken liver and pork. Journal of Food Composition and Analysis, 106379. DOI: https://doi.org/10.1016/j.jfca.2024.106379

Di Trana, A., Sprega, G., Kobidze, G., Taoussi, O., Faro, A. F. L., Bambagiotti, G., Montanari, E., Fede, M. S., Carlier, J., & Tini, A. (2024). QuEChERS Extraction and Simultaneous Quantification in GC-MS/MS of Hexahydrocannabinol Epimers and Their Metabolites in Whole Blood, Urine, and Oral Fluid. Molecules, 29(14). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11279433/ DOI: https://doi.org/10.3390/molecules29143440

Dong, H., Xian, Y., Xiao, K., Wu, Y., Zhu, L., & He, J. (2019). Development and comparison of single-step solid phase extraction and QuEChERS clean-up for the analysis of 7 mycotoxins in fruits and vegetables during storage by UHPLC-MS/MS. Food Chemistry, 274, 471479. DOI: https://doi.org/10.1016/j.foodchem.2018.09.035

Dong, Y., Das, S., Parsons, J. R., Praetorius, A., de Rijke, E., Helmus, R., Slootweg, J. C., & Jansen, B. (2023). Simultaneous detection of pesticides and pharmaceuticals in three types of bio-based fertilizers by an improved QuEChERS method coupled with UHPLC-q-ToF-MS/MS. Journal of Hazardous Materials, 458, 131992. DOI: https://doi.org/10.1016/j.jhazmat.2023.131992

Dong, Z., Zhou, R., Bian, C., Li, H., Wang, L., Fu, J., Xie, G., Shi, X., Li, X., & Li, Z. (2022). Persistence, decontamination and dietary risk assessment of propyrisulfuron residue in natural paddy field environment using QuEChERS@ UPLC-Q-TOF-MS/MS. Microchemical Journal, 181, 107832. DOI: https://doi.org/10.1016/j.microc.2022.107832

Drabiska, N., Marcinkowska, M. A., Wieczorek, M. N., & Jele, H. H. (2023). Application of Sorbent-Based Extraction Techniques in Food Analysis. Molecules, 28(24), 7985. DOI: https://doi.org/10.3390/molecules28247985

Elattar, R. H., & El-Deen, A. K. (2024). Porous material based-QuEChERS: Exploring new horizons in sample preparation. TrAC Trends in Analytical Chemistry, 117571. DOI: https://doi.org/10.1016/j.trac.2024.117571

Eyring, P., Tienstra, M., Mol, H., Herrmann, S. S., Rasmussen, P. H., Frandsen, H. L., & Poulsen, M. E. (2021). Development of a new generic extraction method for the analysis of pesticides, mycotoxins, and polycyclic aromatic hydrocarbons in representative animal feed and food samples. Food Chemistry, 356, 129653. DOI: https://doi.org/10.1016/j.foodchem.2021.129653

Feng, C., Xu, Q., Qiu, X., Ji, J., Lin, Y., Le, S., Wang, G., & Lu, D. (2020). Comprehensive strategy for analysis of pesticide multi-residues in food by GCMS/MS and UPLC-Q-Orbitrap. Food Chemistry, 320, 126576. DOI: https://doi.org/10.1016/j.foodchem.2020.126576

Ferracane, A., Zoccali, M., Cacciola, F., Salerno, T. M. G., Tranchida, P. Q., & Mondello, L. (2021). Determination of multi-pesticide residues in vegetable products using a reduced-scale Quechers method and flow-modulated comprehensive two-dimensional gas chromatography-triple quadrupole mass spectrometry. Journal of Chromatography A, 1645, 462126. DOI: https://doi.org/10.1016/j.chroma.2021.462126

Ferrari, L., & Speltini, A. (2023). Neonicotinoids: An overview of the newest sample preparation procedures of environmental, biological and food matrices. Advances in Sample Preparation, 100094. DOI: https://doi.org/10.1016/j.sampre.2023.100094

Fontana, M. E. Z., da Silva, R. C., Dos Santos, I. D., Neu, J. P., Wouters, R. D., Babinski, P. J., Hoffmann, J. F., Rossi, R. C., Essi, L., & Pizzutti, I. R. (2024). Comprehensive assessment of clean-up strategies for optimizing an analytical multi-method to determine pesticides and mycotoxins in Brazilian medicinal herbs using QuEChERS-LC-TQ-MS/MS. Analytical Methods, 16(29), 50825104. DOI: https://doi.org/10.1039/D4AY00599F

Fuente-Ballesteros, A., Brabenec, O., Tsagkaris, A. S., Ares, A. M., Hajslova, J., & Bernal, J. (2023). Comprehensive overview of the analytical methods for determining pyrrolizidine alkaloids and their derived oxides in foods. Journal of Food Composition and Analysis, 105758. DOI: https://doi.org/10.1016/j.jfca.2023.105758

Fuente-Ballesteros, A., Jano, A., Bernal, J., & Ares, A. M. (2024). Development and validation of an analytical methodology based on solvent extraction and gas chromatography for determining pesticides in royal jelly and propolis. Food Chemistry, 437, 137911. DOI: https://doi.org/10.1016/j.foodchem.2023.137911

Galindo, M. V., Perez, M. V., Lpez-Ruiz, R., da Silva Oliveira, W., Godoy, H. T., Frenich, A. G., & Romero-Gonzlez, R. (2024). Comprehensive analysis of contaminants in Brazilian infant formulas: Application of QuEChERS coupled with UHPLC-QqQ-MS/MS and suspect screening-unknown analysis by UHPLC-Q-Orbitrap-MS. Journal of Chromatography A, 1726, 464967. DOI: https://doi.org/10.1016/j.chroma.2024.464967

Gamal, A., Soliman, M., Al-Anany, M. S., & Eissa, F. (2024). Optimization and validation of high throughput methods for the determination of 132 organic contaminants in green and roasted coffee using GC-QqQ-MS/MS and LC-QqQ-MS/MS. Food Chemistry, 449, 139223. DOI: https://doi.org/10.1016/j.foodchem.2024.139223

Garca-Vara, M., Postigo, C., Palma, P., Bleda, M. J., & de Alda, M. L. (2022). QuEChERS-based analytical methods developed for LC-MS/MS multiresidue determination of pesticides in representative crop fatty matrices: Olives and sunflower seeds. Food Chemistry, 386, 132558. DOI: https://doi.org/10.1016/j.foodchem.2022.132558

Garca-Vara, M., Postigo, C., Palma, P., & de Alda, M. L. (2023). Development of QuEChERS-based multiresidue analytical methods to determine pesticides in corn, grapes and alfalfa. Food Chemistry, 405, 134870. DOI: https://doi.org/10.1016/j.foodchem.2022.134870

Gonzlez-Curbelo, M. ., Gonzlez-Slamo, J., Varela-Martnez, D. A., & Hernndez-Borges, J. (2021). Analysis of Pesticide Residues in Pollen and Dairy Products. In Inamuddin, M. I. Ahamed, & E. Lichtfouse (Eds.), Sustainable Agriculture Reviews 47 ( 47), pp. 4789. Springer International Publishing. https://doi.org/10.1007/978-3-030-54712-7_2 DOI: https://doi.org/10.1007/978-3-030-54712-7_2

Gonzlez-Curbelo, M. ., Varela-Martnez, D. A., & Riao-Herrera, D. A. (2022). Pesticide-residue analysis in soils by the QuEChERS method: A review. Molecules, 27(13), 4323. DOI: https://doi.org/10.3390/molecules27134323

Greer, B., Chevallier, O., Quinn, B., Botana, L. M., & Elliott, C. T. (2021). Redefining dilute and shoot: The evolution of the technique and its application in the analysis of foods and biological matrices by liquid chromatography mass spectrometry. TrAC Trends in Analytical Chemistry, 141, 116284. DOI: https://doi.org/10.1016/j.trac.2021.116284

Guo, Y., Hong, L., Gao, P., Liu, S., Zhu, Y., Xie, X., Zhang, G., & Xie, K. (2024). Development of a QuEChERSHPLCFLD Procedure for the Simultaneous Detection of Residues of Florfenicol, Its Metabolite Florfenicol Amine, and Three Fluoroquinolones in Eggs. Molecules, 29(1), 252. DOI: https://doi.org/10.3390/molecules29010252

Guo, Z., Zhu, Z., Huang, S., & Wang, J. (2020). Non-targeted screening of pesticides for food analysis using liquid chromatography high-resolution mass spectrometry-a review. Food Additives & Contaminants: Part A, 37(7), 11801201. https://doi.org/10.1080/19440049.2020.1753890 DOI: https://doi.org/10.1080/19440049.2020.1753890

Hakami, R. A., Aqel, A., Ghfar, A. A., ALOthman, Z. A., & Badjah-Hadj-Ahmed, A.-Y. (2021). Development of QuEChERS extraction method for the determination of pesticide residues in cereals using DART-ToF-MS and GC-MS techniques. Correlation and quantification study. Journal of Food Composition and Analysis, 98, 103822. DOI: https://doi.org/10.1016/j.jfca.2021.103822

Han, S. G., & Nam, T. G. (2024). Simultaneous determination of sulfonylurea herbicides in tomatoes using the QuEChERS method coupled with HPLC. Applied Biological Chemistry, 67(1), 12. https://doi.org/10.1186/s13765-024-00866-x DOI: https://doi.org/10.1186/s13765-024-00866-x

Hashim, N. M., Waras, M. N., Yahaya, N., Raoov, M., Kabir, A., & Zain, N. N. M. (2024). Green metrics for analytical methodologies: Uncovering sustainable chromatography approaches for detecting emerging contaminants in food and environmental water. TrAC Trends in Analytical Chemistry, 117598. DOI: https://doi.org/10.1016/j.trac.2024.117598

Horstkotte, B. (2023). The Automation Technique Lab-In-Syringe: Developments and Applications. https://dspace.cuni.cz/bitstream/handle/20.500.11956/186965/Habilitation%20Thesis%20Burkhard%20Horstkotte.pdf?sequence=10

Houliston, A. N. (2022). Detection of pesticides in cannabis flowers: A comparative study utilizing DART-MS, LC-MS/MS, and QuEChERS [Masters Thesis, Boston University]. https://search.proquest.com/openview/eca33b1a4831e014ba066f165863e86d/1?pq-origsite=gscholar&cbl=18750&diss=y

Iskandar, M. I., Suhaimi, A. T., Sapar, M., Ariffin, Z. Z., & Safian, M. F. (2024). A Comprehensive Evaluation of The Clean-Up Step in The QuEChERS Procedure for The Determination of Six Groups of Veterinary Drugs in Poultry Using Ultra Performance Liquid Chromatography Tandem Mass Spectrometry. Science Letters, 18(2), 115.

Izcara, S., Casado, N., Morante-Zarcero, S., Prez-Quintanilla, D., & Sierra, I. (2022). Miniaturized and modified QuEChERS method with mesostructured silica as clean-up sorbent for pyrrolizidine alkaloids determination in aromatic herbs. Food Chemistry, 380, 132189. DOI: https://doi.org/10.1016/j.foodchem.2022.132189

Izcara, S., Perestrelo, R., Morante-Zarcero, S., Cmara, J. S., & Sierra, I. (2022). High throughput analytical approach based on QuEChERS combined with UHPLC-PDA for analysis of bioactive secondary metabolites in edible flowers. Food Chemistry, 393, 133371. DOI: https://doi.org/10.1016/j.foodchem.2022.133371

Jain, R., Yahaya, N., Mohamed, A. H., Kabir, A., Chandrawanshi, L. P., AbdElrahman, M., Ghoneim, M. M., & Bakkannavar, S. M. (2023). The role of emerging sample preparation methods in postmortem toxicology: Green and sustainable approaches. TrAC Trends in Analytical Chemistry, 117354. DOI: https://doi.org/10.1016/j.trac.2023.117354

Jeong, W. T., Kim, C. J., & Ryu, S. H. (2024). Establishment of a GC-HRMS-IDMS-based modified QuEChERS approach for rapid, reliable, and simultaneous determination of organochlorine pesticides in soil. Microchemical Journal, 197, 109754. DOI: https://doi.org/10.1016/j.microc.2023.109754

Jiao, W., Zhu, L., Shen, T., Wang, L., Li, Q. X., Wang, C., Wu, X., Chen, H., & Hua, R. (2024). Simultaneous determination of 15 pyrrolizidine alkaloids and their N-oxides in weeds, soil, fresh tea leaves, and tea: Exploring the pollution source of pyrrolizidine alkaloids in tea. Food Chemistry, 434, 137305. DOI: https://doi.org/10.1016/j.foodchem.2023.137305

Juhee, P., Cho, Y. S., Seo, D. W., & Choi, J. Y. (2024). An update on the sample preparation and analytical methods for synthetic food colorants in food products. Food Chemistry, 140333. DOI: https://doi.org/10.1016/j.foodchem.2024.140333

Jung, Y. S., Park, J., Kim, D.-B., Choi, J. Y., & Koo, M. (2023). Optimization of clean-up sorbents for the simultaneous analysis of twenty preservatives in jerky samples using liquid chromatography-ultraviolet detection. LWT, 184, 115041. DOI: https://doi.org/10.1016/j.lwt.2023.115041

Kadhum, H. A., Hammood, M. K., & Arif, M. A. (2024). Assessment of Two Extraction Methods LLE and QUEChERS to Determine Pesticides Residues in Vegetables by Gas Chromatography. IOP Conference Series: Earth and Environmental Science, 1371(6), 062034. https://iopscience.iop.org/article/10.1088/1755-1315/1371/6/062034/meta DOI: https://doi.org/10.1088/1755-1315/1371/6/062034

Kalogeropoulou, A. G., Kosma, C. I., & Albanis, T. A. (2021). Simultaneous determination of pharmaceuticals and metabolites in fish tissue by QuEChERS extraction and UHPLC Q/Orbitrap MS analysis. Analytical and Bioanalytical Chemistry, 413(28), 71297140. https://doi.org/10.1007/s00216-021-03684-y DOI: https://doi.org/10.1007/s00216-021-03684-y

Kaufmann, A., Butcher, P., Maden, K., Walker, S., & Widmer, M. (2023). Assessment and validation of the p-QuEChERS sample preparation methodology for the analysis of >200 veterinary drugs in various animal-based food matrices. Food Additives & Contaminants: Part A, 40(3), 356372. https://doi.org/10.1080/19440049.2023.2171142 DOI: https://doi.org/10.1080/19440049.2023.2171142

Kecojevi, I., DJeki, S., Lazovi, M., Mrkaji, D., Baoi, R., & Loli, A. (2021). Evaluation of LC-MS/MS methodology for determination of 179 multi-class pesticides in cabbage and rice by modified QuEChERS extraction. Food Control, 123, 107693. DOI: https://doi.org/10.1016/j.foodcont.2020.107693

Khanehzar, H., Faraji, M., Nezhadali, A., & Yamini, Y. (2021). Combining of modified QuEChERS and dispersive liquidliquid microextraction as an efficient sample preparation method for extraction of acetamiprid and imidacloprid from pistachio samples. Journal of the Iranian Chemical Society, 18(3), 641649. https://doi.org/10.1007/s13738-020-02050-6 DOI: https://doi.org/10.1007/s13738-020-02050-6

Kiani, A., Arabameri, M., Shariatifar, N., Mehraie, A., Tooryan, F., Ghanbariasad, A., & Shahsavari, S. (2023). Analysis of polychlorinated biphenyls (PCBs) in dairy products by modified QuEChERS/GCQqQMS/MS method: A risk assessment study. Food Science & Nutrition, 11(6), 28952906. https://doi.org/10.1002/fsn3.3269 DOI: https://doi.org/10.1002/fsn3.3269

Kim, K., Choi, Y., Mok, S., Moon, H.-B., & Jeon, J. (2023). Optimization of the QuEChERS method for multi-residue analysis of pharmaceuticals and pesticides in aquaculture products. Food Chemistry, 399, 133958. DOI: https://doi.org/10.1016/j.foodchem.2022.133958

Kokosa, J. M. (2024). The role of liquid phase microextraction in plant and animal food analysis. https://www.explorationpub.com/uploads/Article/A101038/101038.pdf DOI: https://doi.org/10.37349/eff.2024.00038

Koloka, O., Koulama, M., Hela, D., Albanis, T., & Konstantinou, I. (2023). Determination of Multiclass Pharmaceutical Residues in Milk Using Modified QuEChERS and Liquid-Chromatography-Hybrid Linear Ion Trap/Orbitrap Mass Spectrometry: Comparison of Clean-Up Approaches and Validation Studies. Molecules, 28(16), 6130. DOI: https://doi.org/10.3390/molecules28166130

Kosma, C. I., Koloka, O. L., Albanis, T. A., & Konstantinou, I. K. (2021). Accurate mass screening of pesticide residues in wine by modified QuEChERS and LC-hybrid LTQ/Orbitrap-MS. Food Chemistry, 360, 130008. DOI: https://doi.org/10.1016/j.foodchem.2021.130008

Kravos, A., & Prosen, H. (2024). Exploration of novel solid-phase extraction modes for analysis of multiclass emerging contaminants. Analytica Chimica Acta, 1319, 342955. DOI: https://doi.org/10.1016/j.aca.2024.342955

Lee, Y.-J., Kim, S.-H., Eun, H.-R., Kim, S.-M., Jeong, M.-J., Baek, J.-W., Lee, Y.-H., Noh, H. H., & Shin, Y. (2024). Enhancement of Tricyclazole Analysis Efficiency in Rice Samples Using an Improved QuEChERS and Its Application in Residue: A Study from Unmanned Arial Spraying. Applied Sciences, 14(13), 5607. DOI: https://doi.org/10.3390/app14135607

Li, C., Su, Q., Wu, J., Zhou, X., Zhong, D., Liu, X., & Zhou, S. (2023). Analysis of polyhalogenated carbazoles and two related compounds in earthworms using a modified QuEChERS method with GC/MS and GC/MS/MS. Environmental Science and Pollution Research, 30(36), 8625586267. https://doi.org/10.1007/s11356-023-28535-4 DOI: https://doi.org/10.1007/s11356-023-28535-4

Li, S., Yuan, Y., Zhang, L., Ma, F., & Li, P. (2024). Optimization of QuEChERS cleanup for quantification of -oryzanol in vegetable oils by UHPLC-MS/MS. Food Chemistry: X, 22, 101467. DOI: https://doi.org/10.1016/j.fochx.2024.101467

Logan, N., Cao, C., Freitag, S., Haughey, S. A., Krska, R., & Elliott, C. T. (2024). Advancing Mycotoxin Detection in Food and Feed: Novel Insights from SurfaceEnhanced Raman Spectroscopy (SERS). Advanced Materials, 36(15), 2309625. https://doi.org/10.1002/adma.202309625 DOI: https://doi.org/10.1002/adma.202309625

LpezRuiz, R., MarnSez, J., Garrido Frenich, A., & RomeroGonzlez, R. (2022). Recent applications of chromatography for analysis of contaminants in cannabis products: A review. Pest Management Science, 78(1), 1929. https://doi.org/10.1002/ps.6599 DOI: https://doi.org/10.1002/ps.6599

Lou, Y., Xu, Q., Chen, J., Yang, S., Zhu, Z., & Chen, D. (2023). Advancements in Sample Preparation Methods for the Chromatographic and Mass Spectrometric Determination of Zearalenone and Its Metabolites in Food: An Overview. Foods, 12(19), 3558. DOI: https://doi.org/10.3390/foods12193558

Mabunda, K. P., Maseko, B. R., & Ncube, S. (2024). Development and application of a new QuEChERS-molecularly imprinted solid phase extraction (QuEChERS-MISPE) technique for analysis of DDT and its derivatives in vegetables. Food Chemistry, 436, 137747. DOI: https://doi.org/10.1016/j.foodchem.2023.137747

Mahdavi, V., Heris, M.-E. S., Dastranj, M., Farimani, M. M., Eslami, Z., & Aboul-Enein, H. Y. (2021). Assessment of Pesticide Residues in Soils Using a QuEChERS Extraction Procedure and LC-MS/MS. Water, Air, & Soil Pollution, 232(4), 159. https://doi.org/10.1007/s11270-021-05104-4 DOI: https://doi.org/10.1007/s11270-021-05104-4

Mair, K. S., Irrgeher, J., & Haluza, D. (2023). Elucidating the Role of Honey Bees as Biomonitors in Environmental Health Research. Insects, 14(11), 874. DOI: https://doi.org/10.3390/insects14110874

Makni, Y., Diallo, T., Gurin, T., & Parinet, J. (2022). Improving the monitoring of multi-class pesticides in baby foods using QuEChERS-UHPLC-Q-TOF with automated identification based on MS/MS similarity algorithms. Food Chemistry, 395, 133573. DOI: https://doi.org/10.1016/j.foodchem.2022.133573

Mandal, S., Poi, R., Hazra, D. K., Ansary, I., Bhattacharyya, S., & Karmakar, R. (2023a). Review of extraction and detection techniques for the analysis of pesticide residues in fruits to evaluate food safety and make legislative decisions: Challenges and anticipations. Journal of Chromatography B, 1215, 123587.

Mandal, S., Poi, R., Hazra, D. K., Ansary, I., Bhattacharyya, S., & Karmakar, R. (2023b). Review of extraction and detection techniques for the analysis of pesticide residues in fruits to evaluate food safety and make legislative decisions: Challenges and anticipations. Journal of Chromatography B, 1215, 123587. DOI: https://doi.org/10.1016/j.jchromb.2022.123587

Manggala, B., Chaichana, C., Syahputra, W. N. H., & Wongwilai, W. (2023). Pesticide residues detection in agricultural products: A review. Natural and Life Sciences Communications, 22(3),049. DOI: https://doi.org/10.12982/NLSC.2023.049

Marazuela, M. D. (2023). Determination of veterinary drug residues in foods by liquid chromatographymass spectrometry: An updated overview of the most recent applications. Liquid Chromatography, 787816. DOI: https://doi.org/10.1016/B978-0-323-99969-4.00005-X

Marn-Sez, J., Lpez-Ruiz, R., Romero-Gonzlez, R., & Frenich, A. G. (2023). Multiresidue methods for determination of pesticides and related contaminants in food by liquid chromatography. In LiquidChromatography705732). https://www.sciencedirect.com/science/article/pii/B9780323999694000012 DOI: https://doi.org/10.1016/B978-0-323-99969-4.00001-2

Mateus, A. R. S., Barros, S. C., Cortegoso, S. M., Sendn, R., Barbosa-Pereira, L., Khwaldia, K., Pataro, G., Ferrari, G., Breniaux, M., & Ghidossi, R. (2024). Potential of fruit seeds: Exploring bioactives and ensuring food safety for sustainable management of food waste. Food Chemistry: X, 101718. DOI: https://doi.org/10.1016/j.fochx.2024.101718

Mokh, S., Lacalle-Bergeron, L., Izquierdo-Sandoval, D., Corell, M. C., Beltran, J., Sancho, J. V., & Portols, T. (2024). Identification and quantification of flavor compounds in smoked tuna fish based on GC-Orbitrap volatolomics approach. Food Chemistry, 449, 139312. DOI: https://doi.org/10.1016/j.foodchem.2024.139312

Monteil-Rivera, F., Locke, S., Ye, M., Smyth, S. A., Sullivan, K., Okonski, A., Jagla, M., & Gutzman, D. (2024). Quantification of quaternary ammonium compounds by liquid chromatography-mass spectrometry: Minimizing losses from the field to the laboratory. Journal of Chromatography A, 1723, 464905. DOI: https://doi.org/10.1016/j.chroma.2024.464905

Monteiro, S. H., Lehotay, S. J., Sapozhnikova, Y., Ninga, E., & Lightfield, A. R. (2021). High-Throughput Mega-Method for the Analysis of Pesticides, Veterinary Drugs, and Environmental Contaminants by Ultra-High-Performance Liquid ChromatographyTandem Mass Spectrometry and Robotic Mini-Solid-Phase Extraction Cleanup + Low-Pressure Gas ChromatographyTandem Mass Spectrometry, Part 1: Beef. Journal of Agricultural and Food Chemistry, 69(4), 11591168. https://doi.org/10.1021/acs.jafc.0c00710 DOI: https://doi.org/10.1021/acs.jafc.0c00710

Montemurro, N., Manasfi, R., Chiron, S., & Perez, S. (2024). Evaluation of different QuEChERS-based methods for the extraction of 48 wastewater-derived organic contaminants from soil and lettuce root using high-resolution LC-QTOF with MRMHR and SWATH acquisition modes. Environmental Science and Pollution Research, 31(13), 2025820276. https://doi.org/10.1007/s11356-024-32423-w DOI: https://doi.org/10.1007/s11356-024-32423-w

Moreda-Pieiro, J., & Moreda-Pieiro, A. (2023). Recent advances in coupled green assisted extraction techniques for foodstuff analysis. TrAC Trends in Analytical Chemistry, 169, 117411. DOI: https://doi.org/10.1016/j.trac.2023.117411

Mou, B., Zuo, C., Chen, L., Xie, H., Zhang, W., Wang, Q., Wen, L., & Gan, N. (2023). On-site simultaneous determination of neonicotinoids, carbamates, and phenyl pyrazole insecticides in vegetables by QuEChERS extraction on nitrogen and sulfur co-doped carbon dots and portable mass spectrometry. Journal of Chromatography A, 1689, 463744. DOI: https://doi.org/10.1016/j.chroma.2022.463744

Narenderan, S. T., Meyyanathan, S. N., & Babu, B. (2020). Review of pesticide residue analysis in fruits and vegetables. Pre-treatment, extraction and detection techniques. Food Research International, 133, 109141. DOI: https://doi.org/10.1016/j.foodres.2020.109141

Nguyen, T. T., & Baduel, C. (2023). Optimization and validation of an extraction method for the analysis of multi-class emerging contaminants in soil and sediment. Journal of Chromatography A, 1710, 464287. DOI: https://doi.org/10.1016/j.chroma.2023.464287

Ninga, E., Lehotay, S. J., Sapozhnikova, Y., Lightfield, A. R., Strahan, G. D., & Monteiro, S. H. (2022). Analysis of pesticides, veterinary drugs, and environmental contaminants in goat and lamb by the QuEChERSER mega-method. Analytical Methods, 14(28), 27612770. DOI: https://doi.org/10.1039/D2AY00713D

Nwachukwu, S. C., Edo, G. I., Jikah, A. N., Emakpor, O. L., Akpoghelie, P. O., & Agbo, J. J. (2024). Recent advances in the role of mass spectrometry in the analysis of food: A review. Journal of Food Measurement and Characterization, 18(6), 42724287. https://doi.org/10.1007/s11694-024-02492-z DOI: https://doi.org/10.1007/s11694-024-02492-z

OrtizMartnez, M., Molina Gonzlez, J. A., Ramrez Garca, G., De Luna Bugallo, A., Justo Guerrero, M. A., & Strupiechonski, E. C. (2024). Enhancing Sensitivity and Selectivity in Pesticide Detection: A Review of CuttingEdge Techniques. Environmental Toxicology and Chemistry, 43(7), 14681484. https://doi.org/10.1002/etc.5889 DOI: https://doi.org/10.1002/etc.5889

Ostadgholami, M., Zeeb, M., Amirahmadi, M., & Daraei, B. (2023). Multivariate Optimization and Validation of a Modified QuEChERS Method for Determination of PAHs and PCBs in Grilled Meat by GC-MS. Foods, 13(1), 143. DOI: https://doi.org/10.3390/foods13010143

Oymen, B., Ar, S., Trkmen, D., & Denizli, A. (2022). Determination of multi-pesticide residues in honey with a modified QuEChERS procedure followed by LC-MS/MS and GC-MS/MS. Journal of Apicultural Research, 61(4), 530542. https://doi.org/10.1080/00218839.2021.2017540 DOI: https://doi.org/10.1080/00218839.2021.2017540

Peng, P. L., & Lim, L. H. (2022). Polycyclic Aromatic Hydrocarbons (PAHs) Sample Preparation and Analysis in Beverages: A Review. Food Analytical Methods, 15(4), 10421061. https://doi.org/10.1007/s12161-021-02178-y DOI: https://doi.org/10.1007/s12161-021-02178-y

Perestrelo, R., Silva, P., Porto-Figueira, P., Pereira, J. A., Silva, C., Medina, S., & Cmara, J. S. (2019). QuEChERS-Fundamentals, relevant improvements, applications and future trends. Analytica Chimica Acta, 1070, 128. DOI: https://doi.org/10.1016/j.aca.2019.02.036

Petrarca, M. H., Cunha, S. C., & Fernandes, J. O. (2024). Determination of pesticide residues in soybeans using QuEChERS followed by deep eutectic solvent-based DLLME preconcentration prior to gas chromatography-mass spectrometry analysis. Journal of Chromatography A, 1727, 464999. DOI: https://doi.org/10.1016/j.chroma.2024.464999

Prata, R., Lpez-Ruiz, R., Nascimento, L. E. S., Petrarca, M. H., Godoy, H. T., Frenich, A. G., & Arrebola, F. J. (2024). Method validation for GC-measurable pesticides and PAHs in baby foods using QuEChERS-based extraction procedure. Journal of Food Composition and Analysis, 129, 106062. DOI: https://doi.org/10.1016/j.jfca.2024.106062

Radowan, A. A. A. (2024). Analytical Techniques for Determining Pesticide Residues in Food: A Comprehensive Review. International Journal of Materials Technology and Innovation, 4(1), 4274. DOI: https://doi.org/10.21608/ijmti.2024.298332.1105

Rahman, M., Hoque, M. S., Bhowmik, S., Ferdousi, S., Kabiraz, M. P., & van Brakel, M. L. (2021). Monitoring of pesticide residues from fish feed, fish and vegetables in Bangladesh by GC-MS using the QuEChERS method. Heliyon, 7(3). https://www.cell.com/heliyon/fulltext/S2405-8440(21)00495-3 DOI: https://doi.org/10.1016/j.heliyon.2021.e06390

Reddy, A. V. B., Moniruzzaman, M., Madhavi, G., & Aminabhavi, T. M. (2020). Modern approaches in separation, identification and quantification of polychlorinated biphenyls. Current Opinion in Environmental Science & Health, 18, 2639. DOI: https://doi.org/10.1016/j.coesh.2020.06.003

ReyesGarcs, N., & Myers, C. (2021). Analysis of the California list of pesticides, mycotoxins, and cannabinoids in chocolate using liquid chromatography and lowpressure gas chromatographybased platforms. Journal of Separation Science, 44(13), 25642576. https://doi.org/10.1002/jssc.202001265 DOI: https://doi.org/10.1002/jssc.202001265

Rodrguez-Ramos, R., Santana-Mayor, A., Herrera-Herrera, A. V., Socas-Rodrguez, B., & Rodrguez-Delgado, M. A. (2024). Recent advances in the analysis of plastic migrants in food. TrAC Trends in Analytical Chemistry, 117847. DOI: https://doi.org/10.1016/j.trac.2024.117847

Sadighara, P., Basaran, B., Afshar, A., & Nazmara, S. (2023). Optimization of clean-up in QuEChERS method for extraction of mycotoxins in food samples: A systematic review. Microchemical Journal, 109711. DOI: https://doi.org/10.1016/j.microc.2023.109711

Santana-Mayor, A., Rodrguez-Ramos, R., Herrera-Herrera, A. V., Socas-Rodrguez, B., & Rodrguez-Delgado, M. A. (2023). Updated overview of QuEChERS applications in food, environmental and biological analysis (20202023). TrAC Trends in Analytical Chemistry, 117375. DOI: https://doi.org/10.1016/j.trac.2023.117375

Santini, S., Baini, M., Martellini, T., Bissoli, M., Galli, M., Concato, M., Fossi, M. C., & Cincinelli, A. (2024). Novel ultrasound assisted extraction and d-SPE clean-up for the analysis of multiple legacy and emerging organic contaminants in edible fish. Food Chemistry, 443, 138582. DOI: https://doi.org/10.1016/j.foodchem.2024.138582

Sayed, M. M., Hamzawy, A. H., Khalil, M. M., Rady, M. H., & Essa, E. E. (2023). Novel Nano-Sorbents Modified QuEChERS combined with GC-MS/MS for determination of pesticide residues used against Spodoptera littoralis in food stuff. Egyptian Journal of Chemistry, 66(4), 361369.

Scordo, C. V. A., Checchini, L., Renai, L., Orlandini, S., Bruzzoniti, M. C., Fibbi, D., Mandi, L., Ouazzani, N., & Del Bubba, M. (2020). Optimization and validation of a method based on QuEChERS extraction and liquid chromatographictandem mass spectrometric analysis for the determination of perfluoroalkyl acids in strawberry and olive fruits, as model crops with different matrix characteristics. Journal of Chromatography A, 1621, 461038. DOI: https://doi.org/10.1016/j.chroma.2020.461038

Sebasti, A., Pallars, N., Bridgeman, L., Juan-Garca, A., Castagnini, J. M., Ferrer, E., Barba, F. J., & Berrada, H. (2023). A critical review of acrylamide green extraction and determination in food matrices: Current insights and future perspectives. TrAC Trends in Analytical Chemistry, 117267. DOI: https://doi.org/10.1016/j.trac.2023.117267

Shi, R., Liu, L., Liu, X., Liu, Z., Liu, J., Wang, J., Di, S., Qi, P., and Wang, X. (2024). Integrated QuEChERS combined with LCMS/MS for high-throughput analysis of per- and polyfluoroalkyl substances in milk. Analytical and Bioanalytical Chemistry, 416(1), 203214. https://doi.org/10.1007/s00216-023-05008-8 DOI: https://doi.org/10.1007/s00216-023-05008-8

Shyamalagowri, S., Shanthi, N., Manjunathan, J., Kamaraj, M., Manikandan, A., and Aravind, J. (2023). Techniques for the detection and quantification of emerging contaminants. Physical Sciences Reviews, 8(9), 21912218. https://doi.org/10.1515/psr-2021-0055 DOI: https://doi.org/10.1515/psr-2021-0055

Sowik-Borowiec, M., Szpyrka, E., Ksiek-Trela, P., and Podbielska, M. (2022). Simultaneous determination of multi-class pesticide residues and PAHs in plant material and soil samples using the optimized QuEChERS method and tandem mass Spectrometry Analysis. Molecules, 27(7), 2140. DOI: https://doi.org/10.3390/molecules27072140

Soares Da Silva Burato, J., Vargas Medina, D. A., De Toffoli, A. L., Vasconcelos Soares Maciel, E., and Mauro Lanas, F. (2020). Recent advances and trends in miniaturized sample preparation techniques. Journal of Separation Science, 43(1), 202225. https://doi.org/10.1002/jssc.201900776 DOI: https://doi.org/10.1002/jssc.201900776

Sokoowski, A., Dybowski, M. P., Oleszczuk, P., Gao, Y., and Czech, B. (2024). Fast and reliable determination of phthalic acid esters in soil and lettuce samples based on QuEChERS GCMS/MS. Food Chemistry, 440, 138222. DOI: https://doi.org/10.1016/j.foodchem.2023.138222

Song, N.-E., Jung, Y. S., Choi, J. Y., Koo, M., Choi, H.-K., Seo, D.-H., Lim, T.-G., and Nam, T. G. (2020). Development and application of a multi-residue method to determine pesticides in agricultural water using QuEChERS extraction and LC-MS/MS analysis. Separations, 7(4), 52. DOI: https://doi.org/10.3390/separations7040052

Soriano, Y., Andreu, V., and Pic, Y. (2024). Pressurized liquid extraction of organic contaminants in environmental and food samples. TrAC Trends in Analytical Chemistry, 117624. DOI: https://doi.org/10.1016/j.trac.2024.117624

Stefanelli, P., and Barbini, D. A. (2022). Advanced and Recent Approaches for Laboratory Methods of Pesticide Residues and Their Metabolites by Mass Spectrometry Techniques. In E. Gallardo & M. Barroso (Eds.), Pesticide Toxicology (pp. 126). Springer US. https://doi.org/10.1007/978-1-0716-1928-5_1 DOI: https://doi.org/10.1007/978-1-0716-1928-5_1

Stringhini, F. M., Ribeiro, L. C., Rocha, G. I., De B. Kuntz, J. D., Zanella, R., Prestes, O. D., and Adaime, M. B. (2021). Dilution of QuEChERS Extracts Without Cleanup Improves Results in the UHPLC-MS/MS Multiresidue Analysis of Pesticides in Tomato. Food Analytical Methods, 14(8), 15111523. https://doi.org/10.1007/s12161-020-01921-1 DOI: https://doi.org/10.1007/s12161-020-01921-1

Su, Y., Lu, J., Li, F., and Liu, J. (2024). Establishment of a modified QuEChERS extraction and liquid chromatography-tandem mass spectrometry method for multiple pesticide residues followed by determination of the residue levels and exposure assessment in livestock urine. Journal of Chromatography A, 1714, 464547. DOI: https://doi.org/10.1016/j.chroma.2023.464547

Su, Y., Lu, J., Liu, J., Li, F., Wang, N., Lei, H., and Shen, X. (2024). Optimization of a QuEChERSLCMS/MS method for 51 pesticide residues followed by determination of the residue levels and dietary intake risk assessment in foodstuffs. Food Chemistry, 434, 137467. DOI: https://doi.org/10.1016/j.foodchem.2023.137467

Sweeney, C. L., Bennett, J. L., Brown, C. A., Ross, N. W., and Gagnon, G. A. (2021). Validation of a QuEChERS method for extraction of estrogens from a complex water matrix and quantitation via high-performance liquid chromatography-mass spectrometry. Chemosphere, 263, 128315. DOI: https://doi.org/10.1016/j.chemosphere.2020.128315

Tartaglia, A., DAmbrosio, F., Ramundo, P., Ferrone, V., Ricci, D., and Locatelli, M. (2020). Innovative approach to increase sensibility and selectivity in analytical chemistry: QuEChERS method. Rev. Sep. Sci, 2, 1934. DOI: https://doi.org/10.17145/rss.20.003

Tegegne, B., Chandravanshi, B. S., Zewge, F., and Chimuka, L. (2023). Optimization of modified QuEChERS method for extraction of selected pharmaceuticals from vegetable samples using HPLC. Bulletin of the Chemical Society of Ethiopia, 37(4), 831844. DOI: https://doi.org/10.4314/bcse.v37i4.3

Tian, F., Qiao, C., Luo, J., Guo, L., Pang, T., Pang, R., Li, J., Wang, C., Wang, R., and Xie, H. (2020). Development of a fast multi-residue method for the determination of succinate dehydrogenase inhibitor fungicides in cereals, vegetables and fruits by modified QuEChERS and UHPLC-MS/MS. Journal of Chromatography B, 1152, 122261. DOI: https://doi.org/10.1016/j.jchromb.2020.122261

Tlgyesi, ., Cseh, A., Simon, A., and Sharma, V. K. (2023). Development of a novel LC-MS/MS multi-method for the determination of regulated and emerging food contaminants including tenuazonic acid, a chromatographically challenging alternaria toxin. Molecules, 28(3), 1468. DOI: https://doi.org/10.3390/molecules28031468

Tran-Lam, T.-T., Bui, M. Q., Nguyen, H. Q., Dao, Y. H., and Le, G. T. (2021). A combination of chromatography with tandem mass spectrometry systems (UPLC-MS/MS and GC-MS/MS), modified QuEChERS extraction and mixed-mode SPE clean-up method for the analysis of 656 pesticide residues in rice. Foods, 10(10), 2455. DOI: https://doi.org/10.3390/foods10102455

Trantopoulos, E. P., Boti, V. I., and Albanis, T. A. (2024). An Optimized and Validated QuEChERS-Based Method for the Determination of PCBs in Edible Aquatic Species. Food Analytical Methods, 17(5), 679688. https://doi.org/10.1007/s12161-024-02601-0 DOI: https://doi.org/10.1007/s12161-024-02601-0

Tripathy, V., Devi, S., Singh, G., Yadav, R., Sharma, K., Gupta, R., Tandekar, K., Verma, A., and Kalra, S. (2024). Development and validation of tandem mass spectrometry-based method for the analysis of more than 400 pesticides in honey. Journal of Food Composition and Analysis, 128, 106013. DOI: https://doi.org/10.1016/j.jfca.2024.106013

Tsiantas, P., Bempelou, E., Doula, M., & Karasali, H. (2023). Validation and simultaneous monitoring of 311 pesticide residues in loamy sand agricultural soils by LC-MS/MS and GC-MS/MS, combined with QuEChERS-based extraction. Molecules, 28(11), 4268. DOI: https://doi.org/10.3390/molecules28114268

Varela-Martinez, D. A., Gonzalez-Salamo, J., Gonzalez-Curbelo, M. ., and Hernandez-Borges, J. (2020). Quick, easy, cheap, effective, rugged, and safe (QuEChERS) extraction. In Liquid-phase extraction (pp. 399437). Elsevier. https://www.sciencedirect.com/science/article/pii/B9780128169117000141 DOI: https://doi.org/10.1016/B978-0-12-816911-7.00014-1

Veiga-del-Bao, J. M., Oliva, J., Cmara, M. ., Andreo-Martnez, P., & Motas, M. (2024). Matrix-Matched Calibration for the Quantitative Analysis of Pesticides in Pepper and Wheat Flour: Selection of the Best Calibration Model. Agriculture, 14(7), 1014. DOI: https://doi.org/10.3390/agriculture14071014

Vicari, M. C., Facco, J. F., Peixoto, S. C., de Carvalho, G. S., Floriano, L., Prestes, O. D., Adaime, M. B., and Zanella, R. (2024). Simultaneous Determination of Multiresidues of Pesticides and Veterinary Drugs in Agricultural Soil Using QuEChERS and UHPLCMS/MS. Separations, 11(6), 188. DOI: https://doi.org/10.3390/separations11060188

Wahab, S., Muzammil, K., Nasir, N., Khan, M. S., Ahmad, M. F., Khalid, M., Ahmad, W., Dawria, A., Reddy, L. K. V., & Busayli, A. M. (2022). Advancement and new trends in analysis of pesticide residues in food: A comprehensive review. Plants, 11(9), 1106. DOI: https://doi.org/10.3390/plants11091106

Wang, M., Qiao, Y., Luo, Z., Guo, E., Ma, W., Wang, K., Guo, A., and Lian, K. (2024). Development of a QuEChERS combined with LC-MS/MS method for determining 24 sedatives and anesthetics in animal-derived foods. Journal of Food Composition and Analysis, 127, 106000. DOI: https://doi.org/10.1016/j.jfca.2024.106000

Wu, T., Wang, L., Chang, H., Dong, Z., Zhou, R., Li, Y., and Li, B. (2023). Assessment of residues of fluchlordiniliprole in rice and its natural environmental matrices by QuEChERS method using HPLC-MS technique and dissipation behavior. Journal of Food Composition and Analysis, 121, 105429. DOI: https://doi.org/10.1016/j.jfca.2023.105429

Wylie, P. L., Westland, J., Wang, M., Radwan, M. M., Majumdar, C. G., and ElSohly, M. A. (2020). Screening for More than 1,000 pesticides and environmental contaminants in cannabis by GC/Q-TOF. Medical Cannabis and Cannabinoids, 3(1), 1424. DOI: https://doi.org/10.1159/000504391

Yan, Z., Nie, J., Cheng, Y., Han, L., and Farooq, S. (2024). Method development, validation, and risk assessment of multiple pesticide residues of fruits in China. Environmental Science and Pollution Research, 31(12), 1882618841. https://doi.org/10.1007/s11356-024-32198-0 DOI: https://doi.org/10.1007/s11356-024-32198-0

Yang, B., Wang, S., Ma, W., Li, G., Tu, M., Ma, Z., Zhang, Q., Li, H., and Li, X. (2023). Simultaneous determination of neonicotinoid and carbamate pesticides in freeze-dried cabbage by modified quechers and ultra-performance liquid chromatographytandem mass spectrometry. Foods, 12(4), 699. DOI: https://doi.org/10.3390/foods12040699

Yang, S., and Sun, M. (2024). Recent Advanced Methods for Extracting and Analyzing Cannabinoids from Cannabis-Infused Edibles and Detecting Hemp-Derived Contaminants in Food (20132023): A Comprehensive Review. Journal of Agricultural and Food Chemistry, 72(24), 1347613499. https://doi.org/10.1021/acs.jafc.4c01286 DOI: https://doi.org/10.1021/acs.jafc.4c01286

Yang, Y., Liu, L., Li, X., and Bao, R. (2024). Development of a simple UPLC-MS/MS method coupled with a modified QuEChERS for analyzing multiple antibiotics in vegetables and applied to pollution assessment. Journal of Food Composition and Analysis, 129, 106135. DOI: https://doi.org/10.1016/j.jfca.2024.106135

Yao, S. (2023). Screening of Food Contaminants by Portable Vibrational Spectroscopy Sensors: Aflatoxins and Cannabinoids as Case Studies. The Ohio State University. https://search.proquest.com/openview/b9f1b3a5a862e44463b4db655f86330b/1?pq-origsite=gscholar&cbl=18750&diss=y

Yun, D.-Y., Bae, J.-Y., Kang, Y.-J., Lim, C.-U., Jang, G.-H., Eom, M.-O., and Choe, W.-J. (2024). Simultaneous Analysis of 272 Pesticides in Agricultural Products by the QuEChERS Method and Gas Chromatography with Tandem Mass Spectrometry. Molecules, 29(9), 2114. DOI: https://doi.org/10.3390/molecules29092114

Yun, D.-Y., Bae, J.-Y., Park, C.-W., Jang, G.-H., and Choe, W.-J. (2023). Determination of Modified QuEChERS Method for Chlorothalonil Analysis in Agricultural Products Using Gas ChromatographyMass Spectrometry (GC-MS/MS). Foods, 12(20), 3793. DOI: https://doi.org/10.3390/foods12203793

Zhang, J., Chen, Z., Shan, D., Wu, Y., Zhao, Y., Li, C., Shu, Y., Linghu, X., and Wang, B. (2024). Adverse effects of exposure to fine particles and ultrafine particles in the environment on different organs of organisms. Journal of Environmental Sciences, 135, Pp 449473. DOI: https://doi.org/10.1016/j.jes.2022.08.013

Zhang, Q., Liu, P., Li, S., Zhang, X., and Chen, M. (2020). Progress in the analytical research methods of polycyclic aromatic hydrocarbons (PAHs). Journal of Liquid Chromatography & Related Technologies, 43(1314), Pp 425444. https://doi.org/10.1080/10826076.2020.1746668 DOI: https://doi.org/10.1080/10826076.2020.1746668

Published
2024-12-05
How to Cite
ShinkafiI. Y., LawalA., GwaramN. S., & MashiA. L. (2024). RECENT REVIEW OF THE QUECHERS SAMPLE PREPARATION METHOD FOR FOOD AND ENVIRONMENTAL SAMPLE ANALYSIS . FUDMA JOURNAL OF SCIENCES, 8(6), 155 - 169. https://doi.org/10.33003/fjs-2024-0806-2957