SCREENING FOR AFLATOXIGENIC FUNGI IN STORED AND OPEN MARKET GRAINS IN POTISKUM, NORTHEAST NIGERIA

  • Suleiman Gide Department of Microbiology and Biotechnology, Federal University Dutse
  • Sabo Mohammed Abdulkarim Department of Microbiology and Biotechnology, Federal University Dutse
  • Lawal Danjuma Department of Microbiology and Biotechnology, Federal University Dutse
Keywords: Aflatoxigenic fugi, Grains, Aspergillus flavus, Aspergillus parasiticus, Potiskum

Abstract

Fungal and aflatoxin contaminations of grains pose a significant risk to human health as well as animal health hence the need to screen for the presence of aflatoxigenic fungi in grains. Isolation and identification of fungi associated with grains was carried out on 50 samples including rice, millet, wheat, sorghum, barley, maize and sesame obtained from local grain markets and stores in Potiskum. Potato dextrose agar (PDA) and Neutral red desiccated coconut agar (NRCDA) were used for isolation and direct visual determination of aflatoxigenic fungi respectively. Fungal isolates were then screened qualitatively for aflatoxin B1 production by inoculating a pinch of mycelia onto the centre of NRDCA plates. Seven fungi species belonging to the four genera were identified. These include Rhizoctonia, Botrytis sp, Fusarium, Aspergillus flavus, Aspergillus paraciticus, Aspergillus fumigatus and Aspergillus niger. The most predominant fungal genus isolated from stored and open grains markets was Aspergillus. Aspergillus flavus had the highest detection frequency in both stored grain (4, 28.57%) and open grains (2, 40.0%). A. flavus isolated from stored sorghum, maize and sesame exhibited very bright blue fluorescence followed by A. parasiticus isolated from stored red sorghum which exhibited moderate bluish white fluorescence. The aflatoxigenic Aspergillus species 31.58% (n=6) were significantly correlated with qualitative results obtained from NRCDA plates. Isolates from samples with positive results for aflatoxin B1 detection and having blue fluorescence showed amplification of two target genes. Similarly, 14.29% (n=2) of the non-aflatoxigenic isolates were negative for the two genes.

References

Abdus-Salaam, R., Atanda, O., Fanelli, F., Sulyok, M., Cozzi, G., Bavaro, S.L., Krska, R., Logrieco, A.F., Ezekiel, C.N. and Salami, W.A. (2016). Fungal isolates and metabolites in locally processed rice from five agro-ecological zones of Nigeria. Food Additives and Contamination, Part B 9: 281289 DOI: https://doi.org/10.1080/19393210.2016.1215354

Atanda, A., Oguntubo, A., Adejumo, O., Ikeorah, J., & Akpan, L. (2007). Aflatoxin M1 contamination of milk and ice cream in Abeokuta and Odeda local governments of Ogun State, Nigeria. Chemosphere 68 (8), 1455-1458. DOI: https://doi.org/10.1016/j.chemosphere.2007.03.038

Avery, S.V., Singleton, I., Magan, N. and Goldman, G.H. (2019). The fungal threat to global food security. Fungal Biology, 123, 555557 DOI: https://doi.org/10.1016/j.funbio.2019.03.006

Baranyi, N., Kocsub, S., Vgvlgyi, C., Varga, J., (2013). Current trends in aflatoxin research. Acta Biologica Szegediensis, 57: 95107

Christiane, G.D., Timothy, J., Gerd, S. (2019). Global Mycotoxin Occurrence in Feed: A Ten Year Survey (toxins). MDPI.; 11.375 DOI: https://doi.org/10.3390/toxins11070375

Costanzo, P., Santini, A., Fattore, L., Novellino, E., Ritieni, A. (2015). Toxicity of aflatoxin B1 towards the vitamin D receptor (VDR). Food Chem. Toxicol.; 76(2): 77-9. DOI: https://doi.org/10.1016/j.fct.2014.11.025

Dahab, N.F.A., Abdel-Hadi, A.M., Abdul-Raouf, U.M., El-Shanawany, A.A. and Hassane, A.M.A. (2016). Qualitative detection of aflatoxins and aflatoxigenic fungi in wheat flour from different regions of Egypt. IOSR Journal of Environmental Science, Toxicology and Food Technology (IOSR-JESTFT), 10(7): 20-26

Davari E, Mohsenzadeh M, Mohammadi G, Rezaeian-Doloei R. (2015). Characterization of aflatoxigenic Aspergillus flavus and A. parasiticus strain isolates from animal feedstuffs in northeastern Iran. Iran Journal Veterinary Research, 16(2):150-5.

Ekpakpale, D.O., Kraak, B., Meijer, M., Ayeni, K.I., Houbraken, J. and Ezekiel, C.N. (2021). Fungal Diversity and Aflatoxins in Maize and Rice Grains and Cassava-Based Flour (Pupuru) from Ondo State, Nigeria. Journal of Fungi, 7: 635. DOI: https://doi.org/10.3390/jof7080635

Ekwomadu, T.I., Gopane, R.E. and Mwanza, M. (2018). Occurrence of filamentous fungi in maize destined for human consumption in South Africa. Food Science and Nutrition, 6: 884890 DOI: https://doi.org/10.1002/fsn3.561

Ezekiel, C.N., Kraak, B., Sandoval-Denis, M., Sulyok, M., Oyedele, O.A., Ayeni, K.I., Makinde, O.M., Akinyemi, O.M., Krska, R., Crous, P.W. and Houbraken, J. (2020). Diversity and toxigenicity of fungi and description of Fusarium madaense sp. nov. from cereals, legumes and soils in north-central Nigeria. MycoKeys 67: 95124. DOI: https://doi.org/10.3897/mycokeys.67.52716

Ezekiel, C.N., Sulyok, M., Babalola, D.A., Warth, B., Ezekiel, V.C. and Krska, R. (2013). Incidence and consumer awareness of toxigenic Aspergillus section flavi and aflatoxin B1 in peanut cake from Nigeria. Food Contamination, 30 :596601 DOI: https://doi.org/10.1016/j.foodcont.2012.07.048

Ezekiel, C.N., Sulyok, M., Somorin, Y., Odutayo, F.I., Nwabekee, S.U., Balogun, A.T., Krska, R. (2016). Mould and mycotoxin exposure assessment of melon and bush mango seeds, two common soup thickeners consumed in Nigeria. Int. J. Food Microbiol. 2016, 237, 8391. DOI: https://doi.org/10.1016/j.ijfoodmicro.2016.08.019

Falade, T.D.O., Neya, A., Bonkoungou, S., Dagno, K., Basso, A., Senghor, A.L., Atehnkeng, J., Ortega-Beltran, A., Bandyopadhyay, R. (2022). Aflatoxin Contamination of Maize, Groundnut, and Sorghum Grown in Burkina Faso, Mali, and Niger and Aflatoxin Exposure Assessment. Toxins 2022, 14, 700. DOI: https://doi.org/10.3390/toxins14100700

Gong, Y., Hounsa, A., Egal, S., Turner, PC., Sutcliffe, A. E, Hall, A. J., Cardwell, K., Wild, C. P. (2004). Post weaning exposure to aflatoxin results in impaired child growth: A longitudinal study in Benin, West Africa. Environ. Health Perspect. 112: 1334-1338. DOI: https://doi.org/10.1289/ehp.6954

Hussain, A., Afzal, A., Irfan, M. and Abdulla, K. (2015). Molecular detection of aflatoxin producing strains of Aspergillus flavus from peanut (Arachis hypogaea). Turkish Journal Agriculture - Food Science and Technology. 3(5):335-41. DOI: https://doi.org/10.24925/turjaf.v3i5.335-341.123

Kabak, B., Dobson, ADW., Var, I. (2006). Strategies to prevent mycotoxin contamination of food and animal feed: A review. Crit. Rev. Food Sci. Nutr. 46(8): 593-19. DOI: https://doi.org/10.1080/10408390500436185

Mahuku, G., Nzioki, H.S., Mutegi, C., Kanampiu, F., Narrod, C. and Makumbi, D. (2019). Preharvest management is a critical practice for minimizing aflatoxin contamination of maize. DOI: https://doi.org/10.1016/j.foodcont.2018.08.032

Makun, H.A., Anjorin, S.T., Moronfoye, B., Adejo, F.O., Afolabi, O.A., Fagbayibo, G, Balogun, B.O. and Surajudeen, A.A. (2010). Fungal and aflatoxin contamination of some human food commodities in Nigeria. African Journal of Food Science, 4(4):127-135

Makun, H.A., Dutton, M.F., Njobeh, P.B., Phoku, J.Z., Yah, C. (2011). Incidence, phylogeny and mycotoxigenic potentials of fungi isolated from rice in Niger state, Nigeria. Journal of Food Safety, 31: 334349. DOI: https://doi.org/10.1111/j.1745-4565.2011.00305.x

Meyer, H., Skhosana, Z. D., Motlanthe, M., Louw, W., and Rohwer, E. (2019). Multi-Mycotoxins in South African Commerical Maize and Wheat with a Locally Developed and Validated LC-MS/ MS Method. DOI: https://doi.org/10.3390/toxins11050271

Oyedele, O.A., Ezekiel, C.N., Sulyok, M., Adetunji, M., Warth, B., Atanda, O.O. and Krska, R. (2017). Mycotoxin risk assessment for consumers of groundnut in domestic markets in Nigeria. International Journal of Food Microbiology, 251, 2432 DOI: https://doi.org/10.1016/j.ijfoodmicro.2017.03.020

Paterson, RRM and Lima N (2010). How Will Climate Change Affect Mycotoxins in Food? Food Res. Int. 43(7): 19021914 DOI: https://doi.org/10.1016/j.foodres.2009.07.010

Rahimi, S., Sohrabi, N., Ebrahimi, M.A., Tebyanian, M., Taghizadeh, M. and Rahimi, S. (2016). Application of PCR in the detection of aflatoxinogenic and non-aflatoxinogenic strains of Aspergillus flavus group of cattle feed isolated in Iran. Journal of Molecular Biology Research, 6(1):121-128. DOI: https://doi.org/10.5539/jmbr.v6n1p121

Saleemi, M.K., Khan, M.Z., Khan, A., Hameed, M.R., Khatoon, A., Abadin, Z. and Hassan, Z. (2016). Study of fungi and their toxigenic potential isolated from wheat and wheat bran, Toxin Reviews, https://doi.org/10.1080/15569543.2016.1233890 . DOI: https://doi.org/10.1080/15569543.2016.1233890

Sforza, S., DallAsta, C. and Marchelli, R. (2006). Recent advances in mycotoxin determination in food and feed by hyphenated chromatographic techniques/mass spectrometry. Mass Spectrometry Rev. 25(1): 54-76. DOI: https://doi.org/10.1002/mas.20052

Sohrabi, N. and Taghizadeh, M. (2018). Molecular identification of aflatoxigenic Aspergillus species in feedstuff samples. Current Medical Mycology, 4(2): 1-6. https://doi.org/10.18502/cmm.4.2.66 DOI: https://doi.org/10.18502/cmm.4.2.66

Sserumagaa, J.P., Ortega-Beltranb, A., Wagachac, J.M., Mutegid, C.K. and Bandyopadhyay, R. (2020). Aflatoxin-producing fungi associated with pre-harvest maize contamination in Uganda. International Journal of Food Microbiology, 313: 108376. DOI: https://doi.org/10.1016/j.ijfoodmicro.2019.108376

Wangikar, P.B, Dwivedi, P., Neeraj Sinha., Sharma, A.K., Telang, A.G (2005). Teratogenic effects in rabbits of simultaneous exposure to ochratoxin A and aflatoxin B1 with special reference to microscopic effects. Toxicology 215 (1-2), 37-47 DOI: https://doi.org/10.1016/j.tox.2005.06.022

Wild, C.P, (1996). Summary of data on aflatoxin exposure in West Africa.. Proceedings of the workshop on mycotoxins in food in Africa, November 6-10, 1995, Cotonou, Benin. Benin: International Institute of Tropical Agriculture. p. 26.

Williams JH, Phillips TD, Jolly PE, Stiles JK, Jolly CM, Agarwal D (2004). Human aflatoxicosis in developing countries: A review of toxicology, exposure, potential DOI: https://doi.org/10.1093/ajcn/80.5.1106

Xing, F., Liu, X., Wang, L., Selvaraj, J.N., Jin, N., Wang, Y., Zhao, Y. and Liu, Y. (2017). Distribution and variation of fungi and major mycotoxins in pre- and post-nature drying maize in North China Plain. Food Control, 80: 244251. DOI: https://doi.org/10.1016/j.foodcont.2017.03.055

Yang, Z.Y., Shim, W.B., Kim, J.H., Park, S.J., Kang, S.J. and Nam, B.S. (2004) Detection of aflatoxin-producing molds in Korean fermented foods and grains by multiplex PCR. Journal of Food Protection, 67(11):2622-6. DOI: https://doi.org/10.4315/0362-028X-67.11.2622

Published
2025-01-31
How to Cite
GideS., AbdulkarimS. M., & DanjumaL. (2025). SCREENING FOR AFLATOXIGENIC FUNGI IN STORED AND OPEN MARKET GRAINS IN POTISKUM, NORTHEAST NIGERIA. FUDMA JOURNAL OF SCIENCES, 9(1), 106 - 117. https://doi.org/10.33003/fjs-2025-0901-2916