IMPROVING BIOENERGY PRODUCTION FROM ANAEROBIC CO-DIGESTION OF PAPER WASTE AND CHICKEN MANURE USING COCONUT SHELL BIOCHAR
References
Abubakar, M. S., Yazid, A. B., Sabo, A. A., Ibrahim, A., Aliyu, A. U. and Saleh, M. (2023). Effects of textile wastewater pre-treatment on lignocellulosic biomass for solid-state anaerobic digestion. FUDMA Journal of Sciences, 7(1): 156-164. DOI: https://doi.org/10.33003/fjs-2023-0701-1267
Ajeej, A., Thanikal, J. V., Narayanan, C. M. and Kumar, R. S. (2015). An overview of bio augmentation of methane by anaerobic co-digestion of municipal sludge along with microalgae and waste paper. Renewable and Sustainable Energy Reviews, 50: 270-276. DOI: https://doi.org/10.1016/j.rser.2015.04.121
Ajien, A., Idris, J., Md Sofwan, N., Husen, R. and Seli, H. (2023). Coconut shell and husk biochar: A review of production and activation technology, economic, financial aspect and application. Waste Management & Research, 41(1): 37-51. DOI: https://doi.org/10.1177/0734242X221127167
Ambaye, T. G., Rene, E. R., Nizami, A. S., Dupont, C., Vaccari, M. and van Hullebusch, E. D. (2021). Beneficial role of biochar addition on the anaerobic digestion of food waste: a systematic and critical review of the operational parameters and mechanisms. Journal of Environmental Management, 290: 112537. DOI: https://doi.org/10.1016/j.jenvman.2021.112537
Begum, S., Anupoju, G. R. and Eshtiaghi, N. (2021). Anaerobic co-digestion of food waste and cardboard in different mixing ratios: Impact of ultrasound pre-treatment on soluble organic matter and biogas generation potential at varying food to inoculum ratios. Biochemical Engineering Journal, 166: 107853. DOI: https://doi.org/10.1016/j.bej.2020.107853
Cai, Y., Shen, X., Meng, X., Zheng, Z., Usman, M., Hu, K. and Zhao, X. (2023). Syntrophic consortium with the aid of coconut shell-derived biochar enhances methane recovery from ammonia-inhibited anaerobic digestion. Science of the Total Environment, 872: 162182. DOI: https://doi.org/10.1016/j.scitotenv.2023.162182
Cheesbrough, M. (2006). District laboratory practice in tropical countries, part 2. Cambridge university press. Pp 86-110 DOI: https://doi.org/10.1017/CBO9780511543470
Chiappero, M., Norouzi, O., Hu, M., Dcremichelis, F., Berruti, F., Di Maria, F. and Fiore, S. (2020). Review of biochar role as additive in anaerobic digestion processes. Renewable and Sustainable Energy Reviews, 131, 110037. DOI: https://doi.org/10.1016/j.rser.2020.110037
Chinwe, O. G. (2024). Decomposition Processes of Household Waste via Small Scale Biogas Technology: A Case Study of Nigeria.
Devi, P. and Eskicioglu, C. (2024). Effects of biochar on anaerobic digestion: a review. Environmental Chemistry Letters, 1-42. DOI: https://doi.org/10.1007/s10311-024-01766-8
Dudek, M., wiechowski, K., Manczarski, P., Koziel, J. A. and Biaowiec, A. (2019). The effect of biochar addition on the biogas production kinetics from the anaerobic digestion of brewers spent grain. Energies, 12(8): 1518. DOI: https://doi.org/10.3390/en12081518
El Ibrahimi, M., Khay, I., El Maakoul, A. and Bakhouya, M. (2021). Food waste treatment through anaerobic co-digestion: Effects of mixing intensity on the thermohydraulic performance and methane production of a liquid recirculation digester. Process Safety and Environmental Protection, 147: 1171-1184. DOI: https://doi.org/10.1016/j.psep.2021.01.027
Html, S. T., Wang, Z., Liu, Z., Zhang, Y. and Si, B. (2020). The role of biochar to enhance anaerobic digestion: a review. Journal of Renewable Materials, 8(9): 1033-1052. DOI: https://doi.org/10.32604/jrm.2020.011887
Ighalo, J. O., Conradie, J., Ohoro, C. R., Amaku, J. F., Oyedotun, K. O., Maxakato, N. W. and Adegoke, K. A. (2023). Biochar from coconut residues: an overview of production, properties, and applications. Industrial Crops and Products, 204: 117300. DOI: https://doi.org/10.1016/j.indcrop.2023.117300
Ihoeghian, N. A., Amenaghawon, A. N., Ogofure, A., Oshoma, C. E., Ajieh, M. U., Erhunmwunse, N. O. and Martin, A. D. (2023). Biochar-facilitated batch co-digestion of food waste and cattle rumen content: An assessment of process stability, kinetic studies, and pathogen fate. Green Technologies and Sustainability, 1(3): 100035. DOI: https://doi.org/10.1016/j.grets.2023.100035
Induchoodan, T. G., Haq, I. and Kalamdhad, A. S. (2022). Factors affecting anaerobic digestion for biogas production: A review. Advanced organic waste management: 223-233. DOI: https://doi.org/10.1016/B978-0-323-85792-5.00020-4
Jansson, A. T., Patinvoh, R. J., Taherzadeh, M. J. and Horvth, I. S. (2020). Effect of organic compounds on dry anaerobic digestion of food and paper industry wastes. Bioengineered, 11(1): 502-509. DOI: https://doi.org/10.1080/21655979.2020.1752594
Kalidasan, B., Pandey, A. K., Saidur, R., Kothari, R., Sharma, K. and Tyagi, V. V. (2023). Eco-friendly coconut shell biochar based nano-inclusion for sustainable energy storage of binary eutectic salt hydrate phase change materials. Solar Energy Materials and Solar Cells, 262: 112534. DOI: https://doi.org/10.1016/j.solmat.2023.112534
Kaltum, U. M., Hafsah, M. A., Ruwa, A. M. R., Grace, A. F., Ali, A. A., Adeboye, M. M., Musa, I., Falmta, B. M. D., Usman, A. B., Hauwa, M. A., Hosea, S. H. and Abubakar, B. T. (2022). Comparative evaluation on the potentials of sheep rumen contents for biogas generation. FUDMA Journal of Sciences, 6(2): 292-296. DOI: https://doi.org/10.33003/fjs-2022-0602-1757
Khalid, Z. B., Siddique, M. N. I., Nayeem, A., Adyel, T. M., Ismail, S. B. and Ibrahim, M. Z. (2021). Biochar application as sustainable precursors for enhanced anaerobic digestion: A systematic review. Journal of Environmental Chemical Engineering, 9(4): 105489.
Khalid, Z. B., Siddique, M. N. I., Nayeem, A., Adyel, T. M., Ismail, S. B. and Ibrahim, M. Z. (2021). Biochar application as sustainable precursors for enhanced anaerobic digestion: A systematic review. Journal of Environmental Chemical Engineering, 9(4): 105489. DOI: https://doi.org/10.1016/j.jece.2021.105489
Li, W., Siddhu, M. A. H., Amin, F. R., He, Y., Zhang, R., Liu, G. and Chen, C. (2018). Methane production through anaerobic co-digestion of sheep dung and waste paper. Energy Conversion and Management, 156: 279-287. DOI: https://doi.org/10.1016/j.enconman.2017.08.002
Li, Y., Chen, Y. and Wu, J. (2019). Enhancement of methane production in anaerobic digestion process: A review. Applied energy, 240: 120-137. DOI: https://doi.org/10.1016/j.apenergy.2019.01.243
Li, Y., Hua, D., Xu, H., Jin, F., Mu, H., Zhao, Y. and Fang, X. (2020). Acidogenic and methanogenic properties of corn straw silage: regulation and microbial analysis of two-phase anaerobic digestion. Bioresource technology, 307: 123180. DOI: https://doi.org/10.1016/j.biortech.2020.123180
Ma, J., Chen, F., Xue, S., Pan, J., Khoshnevisan, B., Yang, Y. and Qiu, L. (2021). Improving anaerobic digestion of chicken manure under optimized biochar supplementation strategies. Bioresource Technology, 325, 124697. DOI: https://doi.org/10.1016/j.biortech.2021.124697
Manga, M., Aragn-Briceo, C., Boutikos, P., Semiyaga, S., Olabinjo, O. and Muoghalu, C. C. (2023). Biochar and Its Potential Application for the Improvement of the Anaerobic Digestion Process: A Critical Review. Energies, 16(10): 4051. DOI: https://doi.org/10.3390/en16104051
Mansor, A. M., Lim, J. S., Ani, N. S., Hashim, H. and Ho, W. S. (2019). Characteristics of cellulose, hemicellulose and lignin of MD2 pineapple biomass. Chemical Engineering Transactions, 72: 80-83
Ngo, T., Ranlaul, K. and Ball, A. S. (2024). Enhanced methane production during the anaerobic digestion of chicken manure through the addition of pristine and recovered biochar. Cleaner Waste Systems, 7: 100126. DOI: https://doi.org/10.1016/j.clwas.2023.100126
Ngo, T., Shahsavari, E., Shah, K., Surapaneni, A. and Ball, A. S. (2022). Improving bioenergy production in anaerobic digestion systems utilising chicken manure via pyrolysed biochar additives: A review. Fuel, 316: 123374. DOI: https://doi.org/10.1016/j.fuel.2022.123374
Ofon, U. A., Ndubuisi-Nnaji, U. U., Shaibu, S. E., Fatunla, O. K. and Offiong, N. A. O. (2022). Recycling anaerobic digestate enhances the co-digestion potential of agro-industrial residues: influence of different digestates as sources of microbial inoculum. Environmental Technology, 43(28): 4472-4483. DOI: https://doi.org/10.1080/09593330.2021.1952313
Salim, A. A., Zubairu, S. M., Ismail, M., Ahmed, A., Hassan, A. W., Abdulkadir, J. and Ityonum, B. I. (2023). Exploring the potentials of cereal food waste in anaerobic digestion. FUDMA Journal of Sciences, 7(6): 240-243. DOI: https://doi.org/10.33003/fjs-2023-0706-2189
Shen, R., Jing, Y., Feng, J., Luo, J., Yu, J. and Zhao, L. (2020). Performance of enhanced anaerobic digestion with different pyrolysis biochars and microbial communities. Bioresource technology, 296: 122354.
Shen, R., Jing, Y., Feng, J., Luo, J., Yu, J. and Zhao, L. (2020). Performance of enhanced anaerobic digestion with different pyrolysis biochars and microbial communities. Bioresource Technology, 296: 122354. DOI: https://doi.org/10.1016/j.biortech.2019.122354
Shi, Y., Liu, M., Li, J., Yao, Y., Tang, J. and Niu, Q. (2022). The dosage-effect of biochar on anaerobic digestion under the suppression of oily sludge: Performance variation, microbial community succession and potential detoxification mechanisms. Journal of Hazardous Materials, 421: 126819. DOI: https://doi.org/10.1016/j.jhazmat.2021.126819
Siedlecka, E. M., Kumirska, J., Osowski, T., Glamowski, P., Golebiowski, M., Gajdus, J., Kaczynski, Z. and Stepnowski, P. (2008). Determination of volatile fatty acids in environmental aqueous sample. Journal of Environmental Studies, 17(3): 351-356.
Wang, C., Li, L., Shi, J. and Jin, H. (2021). Biochar production by coconut shell gasification in supercritical water and evolution of its porous structure. Journal of Analytical and Applied Pyrolysis, 156: 105151. DOI: https://doi.org/10.1016/j.jaap.2021.105151
Wang, Z., Guo, Y., Wang, W., Chen, L., Sun, Y., Xing, T. and Kong, X. (2021). Effect of biochar addition on the microbial community and methane production in the rapid degradation process of corn straw. Energies, 14: 2223-2236. DOI: https://doi.org/10.3390/en14082223
Xin, Y., Liu, W., Chen, C. and Wang, D. (2022). Effect of Biochar on Methane Production and Structural Characteristics in the Anaerobic Digestion (AD) of Rape Straw. BioResources, 17(4): 5634-5644 DOI: https://doi.org/10.15376/biores.17.4.5632-5644
Xu, Y. and He, Z. (2021). Enhanced volatile fatty acids accumulation in anaerobic digestion through arresting methanogenesis by using hydrogen peroxide. Water Environment Research, 93(10), 2051-2059. DOI: https://doi.org/10.1002/wer.1575
Zhang, B., Zhou, S., Zhou, L., Wen, J. and Yuan, Y. (2019). Pyrolysis temperature-dependent electron transfer capacities of dissolved organic matter derived from wheat straw biochar. Science of the Total Environment, 696:133895 DOI: https://doi.org/10.1016/j.scitotenv.2019.133895
Zhang, C., Yang, R., Sun, M., Zhang, S., He, M., Tsang, D. C. and Luo, G. (2022). Wood waste biochar promoted anaerobic digestion of food waste: focusing on the characteristics of biochar and microbial community analysis. Biochar, 4(1): 62. DOI: https://doi.org/10.1007/s42773-022-00187-6
Zhao, S., Chen, W., Luo, W., Fang, H., Lv, H., Liu, R. and Niu, Q. (2021). Anaerobic co-digestion of chicken manure and cardboard waste: Focusing on methane production, microbial community analysis and energy evaluation. Bioresource Technology, 321: 124429.
Zhao, S., Chen, W., Luo, W., Fang, H., Lv, H., Liu, R. and Niu, Q. (2021). Anaerobic co-digestion of chicken manure and cardboard waste: Focusing on methane production, microbial community analysis and energy evaluation. Bioresource Technology, 321: 124429 DOI: https://doi.org/10.1016/j.biortech.2020.124429
Zobeashia, S. T., Abioye, P. O., Ijah, U. J. J. and Oyewole, O. A. (2021). The impact of physicochemical parameter in anaerobic digestion of organic wastes. Journal of Engineering Science, 27: 61-69. DOI: https://doi.org/10.21203/rs.3.rs-539720/v1
Copyright (c) 2024 FUDMA JOURNAL OF SCIENCES
This work is licensed under a Creative Commons Attribution 4.0 International License.
FUDMA Journal of Sciences