EXPLORING GEOTHERMAL ZONES IN NORTHERN NIGERIA USING LAND SURFACE TEMPERATURE DATA FROM REMOTE SENSING

  • Joseph Aza Ahile Modibbo Adama University, Yola
  • Osita Chukwudi Meludu
  • Adetola Sunday Oniku
Keywords: Land Surface Temperature, LandSat-9(OLI-2/TIR-2), MODIS_LST, Lineament density, Warm/hot spring

Abstract

Nigeria is still unable to meet even the most basic of its energy needs, this lack of power is most evident in houses located in the North-Central and North-East areas. This paper focused on evaluating geothermal potential through remote sensing techniques in parts of Northern Nigeria. Four digital elevation model (DEM) scenes, three Landsat-9(OLI-2/TIR-2) with minimum zero or minimum cloud cover (<6%), and Terra Moderate Resolution Imaging Spectroradiometer satellite images for the research region were processed using ArcMap 10.7.1, Google Earth Pro, and QGIS 3.36.3. The linear correlation analysis performed between Landsat LST and MODIS LST images showed a high correlation coefficient (R² = 0.907). Anomalously high lineament density correlates with high land surface temperature, dominantly in the basement complex of the study area; it's possible that the fracturing will increase the permeability, enabling warm or hot springs to rise to the surface. Fault lines that permit the movement of hot/warm water to the Earth's surface can be linked to active geothermal zones.  The stream/rivers in or around the targeted high LST are probably thermal springs, as they were overlaid on the LST, and high-temperature spots(>280) were identified. The regions around Jibam, Langtang, Aikri, Adikpo, Shemdam, and Ashinge prove to be areas where warm or hot springs can be located.

References

Abraham, E. M., Obande, E. G., Chukwu, M., Chukwu, C. G. and Onwe, M. R. (2015). Estimating Depth to the Bottom of Magnetic Sources at Wikki Warm Spring Region, Northeastern Nigeria, Using Fractal Distribution of Sources Approach. Turkish Journal of Earth Sciences, 24(5), 494 512. DOI: https://doi.org/10.3906/yer-1407-12

Ahile, J.A., Meludu, O.C., Oniku, A.S, Sunu,S.A., Kenda, L.P., Kwarki, S. and Osumeje, J.O. (2024). Examination of the potential for geothermal energy in parts of the Benue trough, Nigeria, through the use of high-resolution aeromagnetic data. Recent Advances in Natural Sciences, 2 (2024) 124. https://doi.org/10.61298/rans.2024.124 DOI: https://doi.org/10.61298/rans.2024.2.2.124

Annual electricity production in Nigeria 2020-2021 report Published Doris Dokua Sasu, Nov 30, 2022 on https://www.statista.com/statistics/1294835/annual-electrical-energy-generation-in-nigeria/ downloaded on 2nd December,2022.

Annor, A. E. (1995). U-Pb Zircon age for Kabba-Okenegranodiorite Gneiss: Implication for Nigerias Basement Chronology. African Geoscience Review, 2, 101 105.

Benkhelil, J. (1989). The origin and evolution of the Cretaceous Benue Trough, Nigeria. J Afr Earth Sci 8:251282 DOI: https://doi.org/10.1016/S0899-5362(89)80028-4

Bourgeois, O., Dauteuil, O., and Van Vliet-Lanoe, B. (2000). Geothermal Control on Flow Patterns in the Last Glacial Maximum Ice Sheet of Iceland, Earth Surface Processes and Landforms, 25(1):5976 DOI: https://doi.org/10.1002/(SICI)1096-9837(200001)25:1<59::AID-ESP48>3.0.CO;2-T

Black, R. and Girod, M. (1970). Late Paleozoic to recent igneous activities in West Africa and its relationship to basement structures. In: Clifford TW, Gass IG (eds) African magmatism and tectonics. Oliver and Boyd, Edinburgh, pp 185210.

Bromley, C. J., Manen, S. M. van, and Mannington, W. (2011). Heat Flux from Steaming Ground: Reducing Uncertainties. In Proceedings, Thirty-Sixth Workshop on Geothermal Reservoir Engineering. Stanford, California.

Carter, J.D., Barber, W. and Tait, E.A. (1963). Geology of parts of Adamawa, Bauchi, and Bornu provinces in Northeastern Nigeria. Bull. Geol Surv. Nlgerta 30, 1- 108.

Dani, M., Agung, S. and Agung H. (2020). Revealing Geothermal Potential Areas with Remote Sensing Analysis for Surface Temperature and Lineament Density: Case Study in South Bajawa, NTT, Indonesia.IOP Conference Series: Earth and Environmental Science,417- 012009. https://doi.org/10.1088/1755-1315/417/1/012009 . DOI: https://doi.org/10.1088/1755-1315/417/1/012009

Dervisoglu, A. (2023). Investigation of the Efficiency of Satellite-Derived LST Data for Mapping the Meteorological Parameters in Istanbul. Atmosphere 14, 644. https://doi.org/10.3390/atmos14040644 . DOI: https://doi.org/10.3390/atmos14040644

on, R., Wenny, B. N., Poole, E., Eftekharzadeh Kay, S., Montanaro, M., Gerace, A., and Thome, K. J. (2024). Landsat 9 Thermal Infrared Sensor-2 (TIRS-2) Pre- and Post-Launch Spatial Response Performance. Remote Sensing, 16(6), 1065. https://doi.org/10.3390/rs16061065 . DOI: https://doi.org/10.3390/rs16061065

Fagbohun, B.J., Salawu, N.B. and Adepoju, S.A. (2024). Integrated magnetic and remote sensing methods for mapping geothermal signatures in the middle part of Benue Trough, Northeastern Nigeria. Remote sensing Applications: Society and Environment.37, https://doi.org/10.1016/j.rsase.2024.101434 . DOI: https://doi.org/10.1016/j.rsase.2024.101434

Gemitzi, A., Dalampakis, P. and Falalakis, G. (2021). Detecting geothermal anomalies using Landsat 8 thermal infrared remotely sensed data. Int. J. Appl. Earth Obs. Geoinf. 96, 102283. https://doi.org/10.1016/J.JAG.2020.102283 . DOI: https://doi.org/10.1016/j.jag.2020.102283

Haselwimmer, C. and Prakash, A. (2013). Thermal infrared remote sensing of geothermal systems. Thermal Infrared Remote Sensing. 17. 453-473. DOI: https://doi.org/10.1007/978-94-007-6639-6_22

Howari, F.M. (2015). Prospecting for geothermal energy through satellite-based thermal data: Review and the way forward. Global J. Environ. Sci. Manage., 1(4): 265-274, DOI: 10.7508/gjesm.

Idi, B.Y., Maiba, A.I. and Abdullahi, M. (2022). The spatial mapping and monitoring thermal anomaly and radiative heat flux using Landsat 8 thermal infrared data-A case study of Lamurde hot spring, upper part of Benue trough, Nigeria. Journal of Applied Geophysics,203, https://doi.org/10.1016/j.jappgeo.2022.104654 . DOI: https://doi.org/10.1016/j.jappgeo.2022.104654

Ike, E., Oniku, A.S., Ezike, S.C. and Wilson, R.E. (2024). Lithological and structural mapping of parts of southwestern Nigeria using aeromagnetic data. Recent Advances in Natural Sciences,2(54). DOI: https://doi.org/10.61298/rans.2024.2.1.54

Jiang, Y. and Lin, W. (2021). A Comparative Analysis of Retrieval Algorithms of Land Surface Temperature from Landsat-8 Data: A Case Study of Shanghai, China. Int. J. Environ. Res. Public Health,18, 5659. DOI: https://doi.org/10.3390/ijerph18115659

Kurowska E, and Schoeneich K (2010) Geothermal exploration in Nigeria. Proceedings of World Geothermal Congress, Bali, Indonesia, 25-29

Kasidi, S. and Nur A. (2013). Estimation of Curie Point Depth, Heat Flow, and Geothermal Gradient Inferred from Aeromagnetic Data over Jalingo and Environs NorthEastern Nigeria. International Journal of Earth Science and Engineering, 6(6), 294-301.

Kmrc, M. . and Akpnar, A. (2009). Importance of geothermal energy and its environmental effects in Turkey. Renewable Energy, 34(6), 16111615. https://doi.org/10.1016/j.renene.2008.11.012. DOI: https://doi.org/10.1016/j.renene.2008.11.012

Li, Z.L., Tang, B.H., Wu, H., Ren, H., Yan, G., Wan, Z., Trigo, I.F. and Sobrino, J.A. (2013). Satellite-derived land surface temperature: Current status and perspectives. Remote Sens. Environ. 131, 1437 DOI: https://doi.org/10.1016/j.rse.2012.12.008

Littleton, Colorado, Nov 30 (Reuters). In the article, Fossil fuels still dominate global power systems. https://www.reuters.com/markets/commodities/fossil-fuels-still-dominate-global-power-systems-2023-11-30/ assessed on 12th December,2024.

Maguire, G. (2023). Fossil fuels still dominate global power systems. Available on https://www.reuters.com/markets/commodities/fossil-fuels-still-dominate-global-power-systems-2023-11-30/ assessed on 3rd September 2024.

Mao, K., Qin, Z., Shi, J. and Gong, P. (2005). A practical split-window algorithm for retrieving land-surface temperature from MODIS data. Int. J. Remote Sens., 26, 31813204. DOI: https://doi.org/10.1080/01431160500044713

Mia, M. B., Bromley, C. J., and Fujimitsu, Y. (2012). Monitoring heat flux using Landsat TM/ETM+ thermal infrared data A case study at Karapiti (Craters of the Moon) thermal area, New Zealand. Journal of Volcanology and Geothermal Research, 235236, 110. https://doi.org/10.1016/j.jvolgeores.2012.05.005. DOI: https://doi.org/10.1016/j.jvolgeores.2012.05.005

Neinavaz, E. Skidmore, A.K. and Darvishzadeh, R. (2020). Effects of prediction accuracy of the proportion of vegetation cover on land surface emissivity and temperature using the NDVI threshold method. Int J Appl Earth Obs Geoinformation, https://doi.org/10.1016/j.jag.2019.101984. DOI: https://doi.org/10.1016/j.jag.2019.101984

Ngene, T., Mukhopadhya, M. and Ampana, S.(2022). Reconnaissance investigation of geothermal resources in parts of the Middle Benue Trough, Nigeria using remote sensing and geophysical Methods. Energy Geoscience, 3 (2022) 360-371, https://doi.org/10.1016/j.engeos.2022.06.002. DOI: https://doi.org/10.1016/j.engeos.2022.06.002

Nuri, D.M., Timur U.Z., Mumtaz, H. and Naci, O. (2005). Curie Point Depth variations to infer the thermal structure of the crust at the African-Eurasian convergence zone, SW Turkey. J. Earth planets Space, 57, 373- 383. DOI: https://doi.org/10.1186/BF03351821

Norman, J. M., and Becker, F., (1995). Terminology in thermal infrared remote sensing of natural surfaces. Remote Sensing Reviews, 12, 159173. DOI: https://doi.org/10.1080/02757259509532284

Obaje, N.G. (2009). Geology and Mineral Resources of Nigeria, Lecture Notes in Earth Sciences, Springer, Berlin Heidelberg DOI: https://doi.org/10.1007/978-3-540-92685-6

Offodile, M.E., (1976). The geology of Middle Benue Trough, Nigeria, Special volume of Paleontological Institute, University of Uppsala, vol. 4, pp. 1-66.

Onyewuchi, R.A, Opara, A.I, Ahiarakwa, C.A and Oko, F.U. (2012). Geological Interpretations inferred from airborne magnetic and Landsat data: A case study of Nkalagu area, southeastern, Nigeria. International journal of science and technology 2 (4), 178-191.

Qin, Q., Zhang, N., Nan, P., and Chai, L. (2011). Geothermal area detection using Landsat ETM+ thermal infrared data and its mechanistic analysisA case study in Tengchong, China. International Journal of Applied Earth Observation and Geoinformation. 13(4), 552-559. DOI: https://doi.org/10.1016/j.jag.2011.02.005

Rajeshwari, A. and Mani, N.D. (2014). Estimation of Land Surface Temperature of Dindigul District Using Landsat 8 Data. International Journal of Research in Engineering and Technology,3(5),122-126. DOI: https://doi.org/10.15623/ijret.2014.0305025

Shahfahad, Talukdar, S., Naikoo, M.W.,Rahman, A.Gagnon, A.S.,Islam, A.T and Mosavi, A.(2023). Comparative evaluation of operational land imager sensor onboard Landsat 8 and Landsat 9 for land use land cover mapping over a heterogeneous landscape.38, (1), 2152496. https://doi.org/10.1080/10106049.2022.2152496 DOI: https://doi.org/10.1080/10106049.2022.2152496

Sasu, D.D. (2023). Electricity generation in Nigeria in 2020 and 2021. https://www.statista.com/statistics/1294835/annual-electrical-energy-generation-in-nigeria/ accessed on 13th November 2024 at 5:20 pm.

Savage, S. (2009). Evaluating the Use of Landsat Imagery for Monitoring Geothermal Heat Flow in Yellowstone National Park. Land Resources and Environmental Sciences, Montana State University, Published CESU TASK AGREEMENT NUMBER: J1580050584.

Sekertekin, A. and Arslan,N. (2019). Monitoring thermal anomaly and radiative heat flux using thermal infrared satellite imagery a case study at Tuzla geothermal region. Elsevier, http://www.elsevier.com/open-access/userlicense/1.0/. DOI: https://doi.org/10.1016/j.geothermics.2018.12.014

Simpson, A., (1954). The Nigerian Coal Field: The geology of parts of Onitsha, Owerri and Benue Provinces. Geological Survey Nigeria Bulletin., 24, 1- 67.

A, USA.

Sobrino, J. A., Jimenez-Munoz, J. C., Soria, G., Romaguera, M., Guanter, L., Moreno, J., and Martinez, P. (2008). Land Surface Emissivity Retrieval from different VNIR and TIR Sensors. IEEE Transactions on Geoscience and Remote Sensing, 46(2), 316327. https://doi.org/10.1109/TGRS.2007.904834. DOI: https://doi.org/10.1109/TGRS.2007.904834

Song, Y., Kim, H.-C., Yum, B.W., and Ahn, E. (2005) Direct-Use Geothermal Development in Korea: Country Update 20002004, in Proceedings of the World Geothermal Congress, 17.

Suryantini and Wibowo H. H. (2010). Application of Fault and Fracture Density (FFD) method for geothermal exploration in the non-volcanic geothermal system: a case study in Sulawesi Indonesia Proceedings World Geothermal Congress 2010.

Wendy M. C., Elizabeth F. L. and Christopher, K. (2014). Remote Sensing of Geothermal-Related Minerals Resource Exploration in Nevada. Elsevier, (775) 784 1785

Weng, Q., Lu, D., and Schubring, J. (2004). Estimation of land surface temperaturevegetation abundance relationship for urban heat island studies. Remote Sensing of Environment, 89(4), 467 483. https://doi.org/10.1016/j.rse.2003.11.005. DOI: https://doi.org/10.1016/j.rse.2003.11.005

Worldbank (2024). Observed Climatology of Average Mean Surface Air Temperature 1991-2020 in Nigeria. Available on https://climate knowledge portal.worldbank.org/country/nigeria/climate-data-historical accessed on 25th June 2024.

Zhengming, W. (2013). Collection-6 MODIS Land Surface Temperature Products Users Guide, ERI; University of California: Santa Barbara, CA, USA.

Published
2025-01-31
How to Cite
AhileJ. A., MeluduO. C., & OnikuA. S. (2025). EXPLORING GEOTHERMAL ZONES IN NORTHERN NIGERIA USING LAND SURFACE TEMPERATURE DATA FROM REMOTE SENSING. FUDMA JOURNAL OF SCIENCES, 9(1), 63 - 73. https://doi.org/10.33003/fjs-2025-0901-2810