IMPACT OF HEAVY METAL CONTAMINATION ON PHYTOCHEMICAL PROFILES IN MARINE CRUSTACEANS: A COMPARATIVE STUDY OF Farfantepenaeus notialis AND Macrobrachium vollenhovenii

  • Oluwadamilola A. Ayanniyi
  • Oluwatosin S. Ibitoye
  • Olabisi H. Ayeni Forestry Research Institute of Nigeria
  • Oluwafunke C. Ademola
  • Emmanuel Ayanniyi Aremu
  • Abiola S. Wealth
  • Muniru O. Murtala
  • Okwudili C. Chiawa
  • D. S. Muritala
  • O. A. Adenika
Keywords: Heavy metals, Contamination, Marine crustaceans, Farfantepenaeus notialis, Macrobrachium vollenhovenii, Phytochemical profiles, Ecological impact

Abstract

Heavy metal contamination poses significant risks to marine ecosystems and human health. This study investigates the impact of heavy metal contamination on the phytochemical profiles of two marine crustacean species, Farfantepenaeus notialis and Macrobrachium vollenhovenii. Samples of these crustaceans were collected from Bodija Market, Ibadan, Nigeria, and analyzed for heavy metal content (Cu, Cd, Pb, Hg, As) and phytochemical constituents including alkaloids, flavonoids, saponins, tannins, anthraquinones, terpenoids, cardiac glycosides, steroids, and phenols. The heavy metal analysis revealed that Farfantepenaeus notialis had concentrations of Cu at 0.592 ± 0.03 mg/g and Pb at 0.080 ± 0.06 mg/g, while Macrobrachium vollenhovenii had lower concentrations of Cu (0.331 ± 0.07 mg/g) and Pb (0.061 ± 0.02 mg/g). Phytochemical screening showed that Farfantepenaeus notialis had higher levels of alkaloids (1.65 ± 0.004% w/w), flavonoids (0.35 ± 0.17% w/w), and saponins (0.80 ± 0.002% w/w) compared to Macrobrachium vollenhovenii, which had lower concentrations of these compounds (alkaloids: 0.75 ± 0.002% w/w, flavonoids: 0.12 ± 0.10% w/w, saponins: 0.75 ± 0.001% w/w). Both species were positive for steroids and cardiac glycosides but lacked detectable levels of tannins and phenols. These results indicate that heavy metal contamination significantly influences the phytochemical composition of marine crustaceans. The higher heavy metal levels in Farfantepenaeus notialis correlated with higher phytochemical concentrations, whereas Macrobrachium vollenhovenii showed lower phytochemical levels, possibly due to its lower heavy metal accumulation. This comparative analysis underscores the need for ongoing monitoring of heavy metal pollution in marine environments and its effects on aquatic organisms' biochemical profiles.

References

Ali, H., Khan, E., & Ilahi, I. (2019). Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. Journal of Chemistry, 2019(1), 6730305. DOI: https://doi.org/10.1155/2019/6730305

Arambourou, H., Llorente, L., Moreno-Ocio, I., Herrero, ., Barata, C., Fuertes, I., Delorme, N., Mndez-Fernndez, L & Planell, R. (2020). Exposure to heavy metal-contaminated sediments disrupts gene expression, lipid profile, and life history traits in the midge Chironomus riparius. Water Research, 168, 115165. DOI: https://doi.org/10.1016/j.watres.2019.115165

Baki, M. A., Hossain, M. M., Akter, J., Quraishi, S. B., Shojib, M. F. H., Ullah, A. A., & Khan, M. F. (2018). Concentration of heavy metals in seafood (fishes, shrimp, lobster and crabs) and human health assessment in Saint Martin Island, Bangladesh. Ecotoxicology and environmental safety, 159, 153-163. DOI: https://doi.org/10.1016/j.ecoenv.2018.04.035

Cilwyn, B., Vijayarathna, S., Shanmugapriya, Jegathambigai, R. N., Sreeramanan, S., Chen, Y., & Sasidharan, S. (2021). The role of phytochemicals in cancer prevention and cure. Bioactive Natural Products for Pharmaceutical Applications, 127-150. DOI: https://doi.org/10.1007/978-3-030-54027-2_4

Demarco, C. F., Quadro, M. S., Selau Carlos, F., Pieniz, S., Morselli, L. B. G. A., & Andreazza, R. (2023). Bioremediation of aquatic environments contaminated with heavy metals: A review of mechanisms, solutions and perspectives. Sustainability, 15(2), 1411. DOI: https://doi.org/10.3390/su15021411

Derrick, A., Yohana, M. A., Yudong, Z., Gongyu, L., Tan, B., & Zhang, S. (2024). Understanding the detrimental effects of heavy metal pollution in shrimp farming and treatment methodsa review. Annals of Animal Science. DOI: https://doi.org/10.2478/aoas-2024-0041

Eskander, S. B., & Saleh, H. M. (2020). Heavy metal-induced oxidative stress and related cellular process. Cellular and molecular phytotoxicity of heavy metals, 99-123. DOI: https://doi.org/10.1007/978-3-030-45975-8_7

Kaushik, B., Sharma, J., Kumar, P., & Shourie, A. (2021). Phytochemical properties and pharmacological role of plants: secondary metabolites. Biosciences Biotechnology Research Asia, 18(1), 23. DOI: https://doi.org/10.13005/bbra/2894

Li, C., Tang, Y., Gu, F., Wang, X., Yang, W., Han, Y., & Ruan, Y. (2022). Phytochemical analysis reveals an antioxidant defense response in Lonicera japonica to cadmium-induced oxidative stress. Scientific Reports, 12(1), 6840. DOI: https://doi.org/10.1038/s41598-022-10912-7

Lpez-Pedrouso, M., Lorenzo, J. M., Cantalapiedra, J., Zapata, C., Franco, J. M., & Franco, D. (2020). Aquaculture and by-products: Challenges and opportunities in the use of alternative protein sources and bioactive compounds. Advances in food and nutrition research, 92, 127-185. DOI: https://doi.org/10.1016/bs.afnr.2019.11.001

Meng, Y., Kelly, F. J., & Wright, S. L. (2020). Advances and challenges of microplastic pollution in freshwater ecosystems: A UK perspective. Environmental Pollution, 256, 113445. DOI: https://doi.org/10.1016/j.envpol.2019.113445

Meshkati, N., Tabibzadeh, M., Farshid, A., Rahimi, M., & Alhanaee, G. (2016). People-technology-ecosystem integration: a framework to ensure regional interoperability for safety, sustainability, and resilience of interdependent energy, water, and seafood sources in the (Persian) gulf. Human factors, 58(1), 43-57. DOI: https://doi.org/10.1177/0018720815623143

Mirkov, I., Stojkovi, D., Aleksandrov, A. P., Ivanov, M., Kosti, M., Glamolija, J., & Sokovi, M. (2020). Plant extracts and isolated compounds reduce parameters of oxidative stress induced by heavy metals: an up-to-date review on animal studies. Current Pharmaceutical Design, 26(16), 1799-1815. DOI: https://doi.org/10.2174/1381612826666200407163408

Ojha, S. B., Roy, S., Das, S., & Dhangadamajhi, G. (2019). Phytochemicals screening, phenolic estimation, and evaluation for anti-oxidant, anti-inflammatory and anti-microbial activities of sequentially Soxhlet extracted coconut testa. Food and Nutrition Sciences, 10(08), 900. DOI: https://doi.org/10.4236/fns.2019.108065

Parida, L., & Patel, T. N. (2023). Systemic impact of heavy metals and their role in cancer development: a review. Environmental Monitoring and Assessment, 195(6), 766. DOI: https://doi.org/10.1007/s10661-023-11399-z

Rahman, M. M., Rahaman, M. S., Islam, M. R., Hossain, M. E., Mannan Mithi, F., Ahmed, M., Saldas, M., Akkol, E.K. & Sobarzo-Snchez, E. (2021). Multifunctional therapeutic potential of phytocomplexes and natural extracts for antimicrobial properties. Antibiotics, 10(9), 1076. DOI: https://doi.org/10.3390/antibiotics10091076

Saudagar, R. B., & Saokar, S. (2019). Anti-inflammatory natural compounds from herbal and marine origin. Journal of Drug Delivery and Therapeutics, 9(3), 669-672. DOI: https://doi.org/10.22270/jddt.v9i3.2906

Shah, S. B. (2021). Heavy metals in the marine environmentan overview. Heavy metals in Scleractinian corals, 1-26. DOI: https://doi.org/10.1007/978-3-030-73613-2_1

Sonone, S. S., Jadhav, S., Sankhla, M. S., & Kumar, R. (2020). Water contamination by heavy metals and their toxic effect on aquaculture and human health through food Chain. Lett. Appl. NanoBioScience, 10(2), 2148-2166. DOI: https://doi.org/10.33263/LIANBS102.21482166

Uddin, M. M., Zakeel, M. C. M., Zavahir, J. S., Marikar, F. M., & Jahan, I. (2021). Heavy metal accumulation in rice and aquatic plants used as human food: A general review. Toxics, 9(12), 360. DOI: https://doi.org/10.3390/toxics9120360

Vanhees, K., van Schooten, F. J., van Doorn, S. B. V. W., van Helden, S., Munnia, A., Peluso, M., Bried, J.J., Haenen, G.R. & Godschalk, R. W. (2013). Intrauterine exposure to flavonoids modifies antioxidant status at adulthood and decreases oxidative stress-induced DNA damage. Free Radical Biology and Medicine, 57, 154-161. DOI: https://doi.org/10.1016/j.freeradbiomed.2012.12.021

Wang, X., Yuan, S., Kong, J., Chen, C., Yu, C., Huang, L., Sun, H., Peng, X. & Hu, Y. (2024). Tea saponin co-ball milled commercial micro zero-valent iron for boosting Cr (VI) removal. Journal of Hazardous Materials, 473, 134668 DOI: https://doi.org/10.1016/j.jhazmat.2024.134668

Published
2024-12-12
How to Cite
AyanniyiO. A., IbitoyeO. S., AyeniO. H., AdemolaO. C., AremuE. A., WealthA. S., MurtalaM. O., ChiawaO. C., MuritalaD. S., & AdenikaO. A. (2024). IMPACT OF HEAVY METAL CONTAMINATION ON PHYTOCHEMICAL PROFILES IN MARINE CRUSTACEANS: A COMPARATIVE STUDY OF Farfantepenaeus notialis AND Macrobrachium vollenhovenii . FUDMA JOURNAL OF SCIENCES, 8(6), 228 - 232. https://doi.org/10.33003/fjs-2024-0806-2806