EFFICIENT METHOD FOR FORECASTING SOLAR IRRADIANCE - A REVIEW

Authors

  • Olusegun A. Odejobi
    Prototype Engineering Development Institute
  • Kehinde Olukunmi Alawode
    Department of Electrical Electronics Engineering, Osun State University, Osogbo, Nigeria
  • Muyideen Olalekan Lawal
    Department of Electrical Electronics Engineering, Osun State University, Osogbo, Nigeria

Keywords:

Forecasting, Irradiation forecasting, Machine Learning, Solar Prediction, Efficient forecasting models

Abstract

Efficient solar irradiance forecasting is essential for optimizing solar energy systems and integrating renewable energy sources into power grids. This review aims to evaluate the effectiveness of various forecasting methods to inform energy management and grid integration strategies. It compares physical models, statistical approaches, machine learning techniques, and hybrid models, using specific criteria such as accuracy, computational efficiency, and data requirements. Physical models like Numerical Weather Prediction (NWP) provide detailed atmospheric simulations but are computationally intensive. Statistical models, such as ARIMA, are simpler yet struggle with non-linear data. Machine learning methods, particularly Artificial Neural Networks (ANNs) and Long Short-Term Memory (LSTM) networks, effectively capture complex data relationships but require substantial datasets and computing power. Hybrid models, which combine physical and machine learning approaches, achieve high accuracy and are suitable for real-time applications despite increased computational costs. One of the key findings indicates that hybrid models offer high accuracy but demand significant computational resources and offer the best balance between accuracy and computational efficiency. However, challenges such as data quality, geographic and temporal variability, and model complexity persist. Emerging technologies like artificial intelligence, big data, and quantum computing present promising solutions for enhanced irradiance forecasting. The review highlighted the models’ limitations and strengths to facilitate informed decision making and concluded with recommendation of the adoption of hybrid models, investment in data acquisition and sharing technologies, balancing model complexity with practicality as steps towards improved irradiance forecasting for grid integration and stability to ensure sustainable yet cost-effective energy solutions.

Dimensions

Aggarwal, S. and Saini, L. M. (2014). Solar energy prediction using linear and non-linear regularization models: a study on AMS (American meteorological society) 201314 solar energy prediction contest. Energy, 78, 247-256. https://doi.org/10.1016/j.energy.2014.10.012

Ahmed, R., Mekhilef, S., Shah, N. M., Mokhlis, H., and Fathi, S. (2020). Machine learning and metaheuristic techniques for PV power forecasting: A review. Journal of Cleaner Production, 253, 119670. https://doi.org/10.1016/j.jclepro.2020.119670

Ahmed, R., Sreeram, V., Mishra, Y., and Arif, M. D. (2020). A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization. Renewable and Sustainable Energy Reviews, 124, 109792.

Ajeel, S. M. and Hashem, H. (2020). Comparison some robust regularization methods in linear regression via simulation study. Academic Journal of Nawroz University, 9(2), 244. https://doi.org/10.25007/ajnu.v9n2a818

Akhter, M. N., Mekhilef, S., Mokhlis, H., and Shah, N. M. (2016). Review on forecasting of photovoltaic power generation based on machine learning and metaheuristic techniques. Renewable and Sustainable Energy Reviews, 61, 384397. https://doi.org/10.1016/j.rser.2016.04.024

Alsharif, M. H., Younes, M. K., and Kim, J. (2019). Time series arima model for prediction of daily and monthly average global solar radiation: the case study of Seoul, south Korea. Symmetry, 11(2), 240. https://doi.org/10.3390/sym11020240

Al-Sharoot, H., M., K. Mohammed, F., and N. Mayali, H. (2023). Lasso quantile principal component regression. Journal of Al-Qadisiyah for Computer Science and Mathematics, 15(4). https://doi.org/10.29304/jqcsm.2023.15.41356

Avwioroko, A., Ibegbulam, C., Afriyie, I., and Fesomade, A. T. (2024). Smart grid integration of solar and biomass energy sources. European Journal of Computer Science and Information Technology, 12(3), 1-14. https://doi.org/10.37745/ejcsit.2013/vol12n3114

Belmahdi, B., Louzazni, M., Marzband, M., and Bouardi, A. E. (2023). Global solar radiation forecasting based on hybrid model with combinations of meteorological parameters: Morocco case study. Forecasting, 5(1), 172-195. https://doi.org/10.3390/forecast5010009

Biktash, L. (2017). Long-term global temperature variations under total solar irradiance, cosmic rays, and volcanic activity. Journal of Advanced Research, 8(4), 329-332. https://doi.org/10.1016/j.jare.2017.03.002

Bouchouicha, K. and Bachari, N. E. I. (2023). Simulation of a clear sky satellite image in water vapor and infrared satellite m.s.g channels. Journal of Renewable Energies, 15(4). https://doi.org/10.54966/jreen.v15i4.355

Cha, J., Kim, M. K., Lee, S., and Kim, K. S. (2021). Investigation of applicability of impact factors to estimate solar irradiance: comparative analysis using machine learning algorithms. Applied Sciences, 11(18), 8533. https://doi.org/10.3390/app11188533

Chodakowska, E., Nazarko, J., Nazarko, ., Ahmad, H. S., Abendeh, R. M., and Alawneh, R. (2023). Arima models in solar radiation forecasting in different geographic locations. Energies, 16(13), 5029. https://doi.org/10.3390/en16135029

Conor, S., Bessa, R. J., Browell, J., and Pinson, P. (2019). The future of forecasting for renewable energy. WIREs Energy and Environment, e365. https://doi.org/10.1002/wene.365

Darian, M. M. M. and Ghorreshi, A. M. (2020). Comparison of the effect of temperature parameter on tracking and fixed photovoltaic systems: a case study in Tehran, Iran. Scientia Iranica, 0(0), 0-0. https://doi.org/10.24200/sci.2020.55173.4102

Dazhi, Y., Kleissl, J., Gueymard, C. A., Pedro, H. T. C., and Coimbra, C. F. M. (2018). History and trends in solar irradiance and PV power forecasting: A preliminary assessment and review using text mining. Solar Energy, 168, 60-101. https://doi.org/10.1016/j.solener.2017.11.023

Du, J., Min, Q., Zhang, P., Guo, J., Yang, J., and Yin, B. (2018). Short-term solar irradiance forecasts using sky images and radiative transfer model. Energies, 11(5), 1107. https://doi.org/10.3390/en11051107

EmmertStreib, F. and Dehmer, M. (2019). High-dimensional lasso-based computational regression models: regularization, shrinkage, and selection. Machine Learning and Knowledge Extraction, 1(1), 359-383. https://doi.org/10.3390/make1010021

Fara, L., Diaconu, A., Crciunescu, D., and Fara, S. (2021). Forecasting of energy production for photovoltaic systems based on ARIMA and ANN advanced models. International Journal of Photoenergy, 2021, 1-19. https://doi.org/10.1155/2021/6777488

Gallego-Castillo, C., Cuerva-Tejero, A., and Lopez-Garcia, O. (2015). Wind power ramp forecasting: A review. Renewable Energy, 83, 940-953. https://doi.org/10.1016/j.renene.2015.05.045

Govender, P. and Sivakumar, V. (2019). Investigating diffuse irradiance variation under different cloud conditions in Durban, using k-means clustering. Journal of Energy in Southern Africa, 30(3), 22-32. https://doi.org/10.17159/2413-3051/2019/v30i3a6314

Gupta, A., Sharma, A., & Goel, A. (2017). Review of regression analysis models. International Journal of Engineering Research And, V6(08). https://doi.org/10.17577/ijertv6is080060

He, Y., Zhao, Y., & Tsui, K. L. (2019). Exploring influencing factors on transit ridership from a local perspective. Smart and Resilient Transportation, 1(1), 2-16. https://doi.org/10.1108/srt-06-2019-0002

Hejase, H. and Assi, A. (2012). Time-series regression model for prediction of mean daily global solar radiation in al-ain, UAE. ISRN Renewable Energy, 2012, 1-11. https://doi.org/10.5402/2012/412471

Hashimoto, A. and Yoshimoto, K. (2023). Development of a shortterm solar irradiance forecasting using satellite image in combination with numerical weather prediction model. Electrical Engineering in Japan, 216(3). https://doi.org/10.1002/eej.23432

Hastuti, M. I., Min, K., and Lee, J. (2023). Improving radar data assimilation forecast using advanced remote sensing data. Remote Sensing, 15(11), 2760. https://doi.org/10.3390/rs15112760

Heinemann, D., Lorenz, E., and Girodo, M. (2006). Forecasting of solar radiation. Solar energy resource management for electricity generation from local level to global scale. Nova Science Publishers, New York, 83-94.

Heinemann, D., Lorenz, E., and Kramer, O. (2020). Numerical weather prediction-based forecasting methods for solar power generation. Renewable Energy, 145, 25302536. https://doi.org/10.1016/j.renene.2020.01.115

Ibrahim, M., Muhammed, A., Ahmad, M. A., & Adamu, A. (2022). An Improved Accuracy for The Forecasting of Power Generation Over A Long-Term Horizon. FUDMA JOURNAL OF SCIENCES, 6(6), 318-324.

Ibrahim, S., Daut, I., Irwan, Y. M., Irwanto, M., Gomesh, N., and Farhana, Z. (2012). Linear regression model in estimating solar radiation in Perlis. Energy Procedia, 18, 1402-1412.

Jozefowicz, R., Zaremba, W., and Sutskever, I. (2015). An empirical exploration of recurrent network architectures. In Proceedings of the International Conference on International Conference on Machine Learning (pp. 23422350). New York: ACM

Kashyap, A., Raza, A., Mekhilef, S., Mokhlis, H., and Shah, N. M. (2015). Solar radiation forecasting using multiple parameters neural networks: A review. Renewable and Sustainable Energy Reviews, 65, 811830. https://doi.org/10.1016/j.rser.2016.07.048

Kayanan, M. and Wijekoon, P. (2020). Variable selection via biased estimators in the linear regression model. Open Journal of Statistics, 10(01), 113-126. https://doi.org/10.4236/ojs.2020.101009

Lei, W., He, Q., Yang, L., and Jiao, H. (2022). Solar photovoltaic cell parameter identification based on improved honey badger algorithm. Sustainability, 14(14), 8897. https://doi.org/10.3390/su14148897

Lennon, A., Lunardi, M. M., Hallam, B., and Dias, P. (2022). The aluminium demand risk of terawatt photovoltaics for net zero emissions by 2050. Nature Sustainability, 5(4), 357-363. https://doi.org/10.1038/s41893-021-00838-9

Liu, J., Bray, M., and Han, D. (2013). A study on WRF radar data assimilation for hydrological rainfall prediction. Hydrology and Earth System Sciences, 17(8), 3095-3110. https://doi.org/10.5194/hess-17-3095-2013

Liu, J., Zhang, Q., and Macin-Juan, R. (2024). Enhancing interpretability in neural networks for nuclear power plant fault diagnosis: A comprehensive analysis and improvement approach. Progress in Nuclear Energy, 174, 105287.

Lu, Z. (2023). Photovoltaic power forecasting approach based on ground-based cloud images in hazy weather. Sustainability, 15(23), 16233. https://doi.org/10.3390/su152316233

Lunche, W., Kisi, O., Zounemat-Kermani, M., Salazar, G. A., and Gong, W. (2016). Solar radiation prediction using different techniques: Model evaluation and comparison. Renewable and Sustainable Energy Reviews, 61, 384-397. https://doi.org/10.1016/j.rser.2016.04.024

Melhem, R. and Shaker, Y. (2023). Optimum tilt angle and solar radiation of photovoltaic modules for gulf collaboration council countries. International Journal of Energy Research, 2023, 1-17. https://doi.org/10.1155/2023/8381696

Nguyen, K. C., Katzfey, J., Riedl, J., and Troccoli, A. (2017). Potential impacts of solar arrays on regional climate and on array efficiency. International Journal of Climatology, 37(11), 4053-4064. https://doi.org/10.1002/joc.4995

Nur, A. R., Jaya, A. K., and Siswanto, S. (2023). Comparative analysis of ridge, lasso, and elastic net regularization approaches in handling multicollinearity for infant mortality data in south sulawesi. Jurnal Matematika, Statistika Dan Komputasi, 20(2), 311-319. https://doi.org/10.20956/j.v20i2.31632

Oladunjoye, O. O., Olasoji, Y. O., Adedeji, K. B., Oladunjoye, O. A., and Olebu, C. (2022). A solar energy control system for on-grid energy storage device. European Journal of Electrical Engineering and Computer Science, 6(3), 1-6. https://doi.org/10.24018/ejece.2022.6.3.429

Ortega, J. L., and Aguillo, I. F. (2014). Mapping academic collaboration in Europe using Google Scholar citations. Journal of Informetrics, 8(3), 654662. https://doi.org/10.1016/j.joi.2014.04.005

Pathak, J., Subramanian, S., Harrington, P. d. B., Raja, S. K. S., Chattopadhyay, A., Mardani, M., and Anandkumar, A. (2022). Fourcastnet: a global data-driven high-resolution weather model using adaptive fourier neural operators. https://doi.org/10.48550/arxiv.2202.11214

Radovan, A., unde, V., Kuak, D., and Ban, . (2021). Solar irradiance forecast based on cloud movement prediction. Energies, 14(13), 3775. https://doi.org/10.3390/en14133775

Rady, E. A. and Mahmoud, H. (2018). Modeling of biological data based on regression methods. Zagazig Veterinary Journal, 46(2), 146-153. https://doi.org/10.21608/zvjz.2018.14387

Rojas-Campos, A., Langguth, M., Wittenbrink, M., and Pipa, G. (2022). Deep learning models for generation of precipitation maps based on numerical weather prediction.. https://doi.org/10.5194/egusphere-2022-648

Sansine, V., Ortega, P., Hissel, D., and Ferrucci, F. (2023). Hybrid deep learning model for mean hourly irradiance probabilistic forecasting. Atmosphere, 14(7), 1192.

Santos, D. S. d. O., Neto, P. S. G. d. M., Oliveira, J. F. L. d., Siqueira, H. V., Barchi, T. M., Lima, A. R., and Marinho, M. H. N. (2022). Solar irradiance forecasting using dynamic ensemble selection. Applied Sciences, 12(7), 3510. https://doi.org/10.3390/app12073510

Seo, Y. A. and Cha, J. (2023). Precipitation probability prediction through NWP bias correction for south korea using random forest. International Journal on Advanced Science, Engineering and Information Technology, 13(3), 935-942. https://doi.org/10.18517/ijaseit.13.3.18224

Smilevski, M. (2020). Applying recent advances in Visual Question Answering to Record Linkage. arXiv preprint arXiv:2007.05881.

Sobrina, S., Koohi-Kamali, S., and Rahim, N. A. (2018). Solar photovoltaic generation forecasting methods: A review. Energy Conversion and Management, 156, 459-497. https://doi.org/10.1016/j.enconman.2017.11.019

Soni, V. K., Pandithurai, G., and Pai, D. S. (2011). Evaluation of longterm changes of solar radiation in india. International Journal of Climatology, 32(4), 540-551. https://doi.org/10.1002/joc.2294

Sutikno, S., Cahyoko, F. D., Putra, F. W., Makmur, E. E. S., Hanggoro, W., Taufik, M. R., and Aza, V. (2024). Calibration Indonesian-numerical weather prediction using geostatistical output perturbation. Jurnal Meteorologi Dan Geofisika, 24(2), 105-113. https://doi.org/10.31172/jmg.v24i2.1037

Sweeney, C., Bessa, R. J., Browell, J., and Pinson, P. (2019). The future of forecasting for renewable energy: Perspectives and challenges. WIREs Energy and Environment, 8(3), e365. https://doi.org/10.1002/wene.365

Tang, Q., Zhang, H., & Gong, S. (2020). Bayesian regularized quantile regression analysis based on asymmetric laplace distribution. Journal of Applied Mathematics and Physics, 08(01), 70-84. https://doi.org/10.4236/jamp.2020.81006

Tian, Y., Zhao, Y., Li, J., Chen, B., Deng, L., and Wen, D. (2024). East asia atmospheric river forecast with a deep learning method: ganunet. Journal of Geophysical Research: Atmospheres, 129(5). https://doi.org/10.1029/2023jd039311

Trapero, J. R., Kourentzes, N., and Martn, A. (2015). Short-term solar irradiation forecasting based on dynamic harmonic regression. Energy, 84, 289-295. https://doi.org/10.1016/j.energy.2015.02.100

Trojkov, A., Mile, M., and Tudor, M. (2019). Observation preprocessing system for rc lace (oplace). Advances in Science and Research, 16, 223-228. https://doi.org/10.5194/asr-16-223-2019

Wang, H., Liu, Y., Zhou, B., and Li, C. (2020). Taxonomy research of artificial intelligence for deterministic solar power forecasting. Energy Conversion and Management, 214, 112909. https://doi.org/10.1016/j.enconman.2020.112909

Watagoda, L. C. R. P., Arnholt, A. T., & Don, H. S. R. A. (2021). hrlr regression. RMS: Research in Mathematics &Amp; Statistics, 8(1). https://doi.org/10.1080/27658449.2021.1921904

Xin, S. J. and Khalid, K. (2018). Modelling house price using ridge regression and lasso regression. International Journal of Engineering &Amp; Technology, 7(4.30), 498. https://doi.org/10.14419/ijet.v7i4.30.22378

Xu, M. (2024). Sales prediction based on lasso regression. Highlights in Science, Engineering and Technology, 88, 343-349. https://doi.org/10.54097/p9hyrk70

Voyant, C., Notton, G., Kalogirou, S., Nivet, M.-L., Paoli, C., Motte, F., and Fouilloy, A. (2017). Machine learning methods for solar radiation forecasting: A review. Renewable Energy, 105, 569-582. https://doi.org/10.1016/j.renene.2016.12.095

Yang, D., Kleissl, J., Gueymard, C. A., Pedro, H. T. C., and Coimbra, C. F. M. (2018). History and trends in solar irradiance and PV power forecasting: A preliminary assessment and review using text mining. Solar Energy, 168, 60-101. https://doi.org/10.1016/j.solener.2017.11.023

Zhang, L., Wang, S., Yu, Z., He, C., and Jin, X. (2014). Development of an instant correction and display system of numerical weather prediction products in china. Chinese Geographical Science, 24(6), 682-693. https://doi.org/10.1007/s11769-014-0672-7

Zhang, T., Cheng, C., and Gao, P. (2019). Permutation entropy-based analysis of temperature complexity spatial-temporal variation and its driving factors in china. Entropy, 21(10), 1001. https://doi.org/10.3390/e21101001

Zhang, Y., and Wang, J. (2019). A review of solar irradiance forecasting methods. Renewable and Sustainable Energy Reviews, 101, 1-12.

Zhang, Z., Zhang, T., Zhang, R., Zhu, X., Wu, X., Tan, S., & Jian, Z. (2024). Predicting colorectal cancer risk: a novel approach using anemia and blood test markers. Frontiers in Oncology, 14. https://doi.org/10.3389/fonc.2024.1347058

Zhao, L. and Lu, F. (2014). Study on effects of solar generation on power grid. Advanced Materials Research, 986-987, 560-563. https://doi.org/10.4028/www.scientific.net/amr.986-987.560

Zhu, H., Li, X., Sun, Q., Nie, L., Yao, J., and Zhao, G. (2015). A power prediction method for photovoltaic power plant based on wavelet decomposition and artificial neural networks. Energies, 9(1), 11.

Zwane, N., Tazvinga, H., Botai, C., Murambadoro, M., Botai, J., De Wit, J., ... and Mabhaudhi, T. (2022). A bibliometric analysis of solar energy forecasting studies in Africa. Energies, 15(15), 5520.

Published

14-12-2024

How to Cite

EFFICIENT METHOD FOR FORECASTING SOLAR IRRADIANCE - A REVIEW. (2024). FUDMA JOURNAL OF SCIENCES, 8(6), 285-298. https://doi.org/10.33003/fjs-2024-0806-2786

How to Cite

EFFICIENT METHOD FOR FORECASTING SOLAR IRRADIANCE - A REVIEW. (2024). FUDMA JOURNAL OF SCIENCES, 8(6), 285-298. https://doi.org/10.33003/fjs-2024-0806-2786