EFFICIENT METHOD FOR FORECASTING SOLAR IRRADIANCE - A REVIEW
Abstract
Efficient solar irradiance forecasting is essential for optimizing solar energy systems and integrating renewable energy sources into power grids. This review aims to evaluate the effectiveness of various forecasting methods to inform energy management and grid integration strategies. It compares physical models, statistical approaches, machine learning techniques, and hybrid models, using specific criteria such as accuracy, computational efficiency, and data requirements. Physical models like Numerical Weather Prediction (NWP) provide detailed atmospheric simulations but are computationally intensive. Statistical models, such as ARIMA, are simpler yet struggle with non-linear data. Machine learning methods, particularly Artificial Neural Networks (ANNs) and Long Short-Term Memory (LSTM) networks, effectively capture complex data relationships but require substantial datasets and computing power. Hybrid models, which combine physical and machine learning approaches, achieve high accuracy and are suitable for real-time applications despite increased computational costs. One of the key findings indicates that hybrid models offer high accuracy but demand significant computational resources and offer the best balance between accuracy and computational efficiency. However, challenges such as data quality, geographic and temporal variability, and model complexity persist. Emerging technologies like artificial intelligence, big data, and quantum computing present promising solutions for enhanced irradiance forecasting. The review highlighted the models’ limitations and strengths to facilitate informed decision making and concluded with recommendation of the adoption of hybrid models, investment in data acquisition and sharing technologies, balancing model complexity with practicality as steps towards improved irradiance forecasting for grid integration and stability to ensure sustainable yet cost-effective energy solutions.
References
Aggarwal, S. and Saini, L. M. (2014). Solar energy prediction using linear and non-linear regularization models: a study on AMS (American meteorological society) 201314 solar energy prediction contest. Energy, 78, 247-256. https://doi.org/10.1016/j.energy.2014.10.012 DOI: https://doi.org/10.1016/j.energy.2014.10.012
Ahmed, R., Mekhilef, S., Shah, N. M., Mokhlis, H., and Fathi, S. (2020). Machine learning and metaheuristic techniques for PV power forecasting: A review. Journal of Cleaner Production, 253, 119670. https://doi.org/10.1016/j.jclepro.2020.119670
Ahmed, R., Sreeram, V., Mishra, Y., and Arif, M. D. (2020). A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization. Renewable and Sustainable Energy Reviews, 124, 109792. DOI: https://doi.org/10.1016/j.rser.2020.109792
Ajeel, S. M. and Hashem, H. (2020). Comparison some robust regularization methods in linear regression via simulation study. Academic Journal of Nawroz University, 9(2), 244. https://doi.org/10.25007/ajnu.v9n2a818 DOI: https://doi.org/10.25007/ajnu.v9n2a818
Akhter, M. N., Mekhilef, S., Mokhlis, H., and Shah, N. M. (2016). Review on forecasting of photovoltaic power generation based on machine learning and metaheuristic techniques. Renewable and Sustainable Energy Reviews, 61, 384397. https://doi.org/10.1016/j.rser.2016.04.024
Alsharif, M. H., Younes, M. K., and Kim, J. (2019). Time series arima model for prediction of daily and monthly average global solar radiation: the case study of Seoul, south Korea. Symmetry, 11(2), 240. https://doi.org/10.3390/sym11020240 DOI: https://doi.org/10.3390/sym11020240
Al-Sharoot, H., M., K. Mohammed, F., and N. Mayali, H. (2023). Lasso quantile principal component regression. Journal of Al-Qadisiyah for Computer Science and Mathematics, 15(4). https://doi.org/10.29304/jqcsm.2023.15.41356 DOI: https://doi.org/10.29304/jqcsm.2023.15.41356
Avwioroko, A., Ibegbulam, C., Afriyie, I., and Fesomade, A. T. (2024). Smart grid integration of solar and biomass energy sources. European Journal of Computer Science and Information Technology, 12(3), 1-14. https://doi.org/10.37745/ejcsit.2013/vol12n3114 DOI: https://doi.org/10.37745/ejcsit.2013/vol12n3114
Belmahdi, B., Louzazni, M., Marzband, M., and Bouardi, A. E. (2023). Global solar radiation forecasting based on hybrid model with combinations of meteorological parameters: Morocco case study. Forecasting, 5(1), 172-195. https://doi.org/10.3390/forecast5010009 DOI: https://doi.org/10.3390/forecast5010009
Biktash, L. (2017). Long-term global temperature variations under total solar irradiance, cosmic rays, and volcanic activity. Journal of Advanced Research, 8(4), 329-332. https://doi.org/10.1016/j.jare.2017.03.002 DOI: https://doi.org/10.1016/j.jare.2017.03.002
Bouchouicha, K. and Bachari, N. E. I. (2023). Simulation of a clear sky satellite image in water vapor and infrared satellite m.s.g channels. Journal of Renewable Energies, 15(4). https://doi.org/10.54966/jreen.v15i4.355 DOI: https://doi.org/10.54966/jreen.v15i4.355
Cha, J., Kim, M. K., Lee, S., and Kim, K. S. (2021). Investigation of applicability of impact factors to estimate solar irradiance: comparative analysis using machine learning algorithms. Applied Sciences, 11(18), 8533. https://doi.org/10.3390/app11188533 DOI: https://doi.org/10.3390/app11188533
Chodakowska, E., Nazarko, J., Nazarko, ., Ahmad, H. S., Abendeh, R. M., and Alawneh, R. (2023). Arima models in solar radiation forecasting in different geographic locations. Energies, 16(13), 5029. https://doi.org/10.3390/en16135029 DOI: https://doi.org/10.3390/en16135029
Conor, S., Bessa, R. J., Browell, J., and Pinson, P. (2019). The future of forecasting for renewable energy. WIREs Energy and Environment, e365. https://doi.org/10.1002/wene.365
Darian, M. M. M. and Ghorreshi, A. M. (2020). Comparison of the effect of temperature parameter on tracking and fixed photovoltaic systems: a case study in Tehran, Iran. Scientia Iranica, 0(0), 0-0. https://doi.org/10.24200/sci.2020.55173.4102 DOI: https://doi.org/10.24200/sci.2020.55173.4102
Dazhi, Y., Kleissl, J., Gueymard, C. A., Pedro, H. T. C., and Coimbra, C. F. M. (2018). History and trends in solar irradiance and PV power forecasting: A preliminary assessment and review using text mining. Solar Energy, 168, 60-101. https://doi.org/10.1016/j.solener.2017.11.023
Du, J., Min, Q., Zhang, P., Guo, J., Yang, J., and Yin, B. (2018). Short-term solar irradiance forecasts using sky images and radiative transfer model. Energies, 11(5), 1107. https://doi.org/10.3390/en11051107 DOI: https://doi.org/10.3390/en11051107
EmmertStreib, F. and Dehmer, M. (2019). High-dimensional lasso-based computational regression models: regularization, shrinkage, and selection. Machine Learning and Knowledge Extraction, 1(1), 359-383. https://doi.org/10.3390/make1010021 DOI: https://doi.org/10.3390/make1010021
Fara, L., Diaconu, A., Crciunescu, D., and Fara, S. (2021). Forecasting of energy production for photovoltaic systems based on ARIMA and ANN advanced models. International Journal of Photoenergy, 2021, 1-19. https://doi.org/10.1155/2021/6777488 DOI: https://doi.org/10.1155/2021/6777488
Gallego-Castillo, C., Cuerva-Tejero, A., and Lopez-Garcia, O. (2015). Wind power ramp forecasting: A review. Renewable Energy, 83, 940-953. https://doi.org/10.1016/j.renene.2015.05.045 DOI: https://doi.org/10.1016/j.renene.2015.05.045
Govender, P. and Sivakumar, V. (2019). Investigating diffuse irradiance variation under different cloud conditions in Durban, using k-means clustering. Journal of Energy in Southern Africa, 30(3), 22-32. https://doi.org/10.17159/2413-3051/2019/v30i3a6314 DOI: https://doi.org/10.17159/2413-3051/2019/v30i3a6314
Gupta, A., Sharma, A., & Goel, A. (2017). Review of regression analysis models. International Journal of Engineering Research And, V6(08). https://doi.org/10.17577/ijertv6is080060 DOI: https://doi.org/10.17577/IJERTV6IS080060
He, Y., Zhao, Y., & Tsui, K. L. (2019). Exploring influencing factors on transit ridership from a local perspective. Smart and Resilient Transportation, 1(1), 2-16. https://doi.org/10.1108/srt-06-2019-0002 DOI: https://doi.org/10.1108/SRT-06-2019-0002
Hejase, H. and Assi, A. (2012). Time-series regression model for prediction of mean daily global solar radiation in al-ain, UAE. ISRN Renewable Energy, 2012, 1-11. https://doi.org/10.5402/2012/412471 DOI: https://doi.org/10.5402/2012/412471
Hashimoto, A. and Yoshimoto, K. (2023). Development of a shortterm solar irradiance forecasting using satellite image in combination with numerical weather prediction model. Electrical Engineering in Japan, 216(3). https://doi.org/10.1002/eej.23432 DOI: https://doi.org/10.1002/eej.23432
Hastuti, M. I., Min, K., and Lee, J. (2023). Improving radar data assimilation forecast using advanced remote sensing data. Remote Sensing, 15(11), 2760. https://doi.org/10.3390/rs15112760 DOI: https://doi.org/10.3390/rs15112760
Heinemann, D., Lorenz, E., and Girodo, M. (2006). Forecasting of solar radiation. Solar energy resource management for electricity generation from local level to global scale. Nova Science Publishers, New York, 83-94.
Heinemann, D., Lorenz, E., and Kramer, O. (2020). Numerical weather prediction-based forecasting methods for solar power generation. Renewable Energy, 145, 25302536. https://doi.org/10.1016/j.renene.2020.01.115 DOI: https://doi.org/10.1016/j.renene.2020.01.115
Ibrahim, M., Muhammed, A., Ahmad, M. A., & Adamu, A. (2022). An Improved Accuracy for The Forecasting of Power Generation Over A Long-Term Horizon. FUDMA JOURNAL OF SCIENCES, 6(6), 318-324. DOI: https://doi.org/10.33003/fjs-2022-0606-1696
Ibrahim, S., Daut, I., Irwan, Y. M., Irwanto, M., Gomesh, N., and Farhana, Z. (2012). Linear regression model in estimating solar radiation in Perlis. Energy Procedia, 18, 1402-1412. DOI: https://doi.org/10.1016/j.egypro.2012.05.156
Jozefowicz, R., Zaremba, W., and Sutskever, I. (2015). An empirical exploration of recurrent network architectures. In Proceedings of the International Conference on International Conference on Machine Learning (pp. 23422350). New York: ACM
Kashyap, A., Raza, A., Mekhilef, S., Mokhlis, H., and Shah, N. M. (2015). Solar radiation forecasting using multiple parameters neural networks: A review. Renewable and Sustainable Energy Reviews, 65, 811830. https://doi.org/10.1016/j.rser.2016.07.048 DOI: https://doi.org/10.1016/j.rser.2015.04.077
Kayanan, M. and Wijekoon, P. (2020). Variable selection via biased estimators in the linear regression model. Open Journal of Statistics, 10(01), 113-126. https://doi.org/10.4236/ojs.2020.101009 DOI: https://doi.org/10.4236/ojs.2020.101009
Lei, W., He, Q., Yang, L., and Jiao, H. (2022). Solar photovoltaic cell parameter identification based on improved honey badger algorithm. Sustainability, 14(14), 8897. https://doi.org/10.3390/su14148897 DOI: https://doi.org/10.3390/su14148897
Lennon, A., Lunardi, M. M., Hallam, B., and Dias, P. (2022). The aluminium demand risk of terawatt photovoltaics for net zero emissions by 2050. Nature Sustainability, 5(4), 357-363. https://doi.org/10.1038/s41893-021-00838-9 DOI: https://doi.org/10.1038/s41893-021-00838-9
Liu, J., Bray, M., and Han, D. (2013). A study on WRF radar data assimilation for hydrological rainfall prediction. Hydrology and Earth System Sciences, 17(8), 3095-3110. https://doi.org/10.5194/hess-17-3095-2013 DOI: https://doi.org/10.5194/hess-17-3095-2013
Liu, J., Zhang, Q., and Macin-Juan, R. (2024). Enhancing interpretability in neural networks for nuclear power plant fault diagnosis: A comprehensive analysis and improvement approach. Progress in Nuclear Energy, 174, 105287. DOI: https://doi.org/10.1016/j.pnucene.2024.105287
Lu, Z. (2023). Photovoltaic power forecasting approach based on ground-based cloud images in hazy weather. Sustainability, 15(23), 16233. https://doi.org/10.3390/su152316233 DOI: https://doi.org/10.3390/su152316233
Lunche, W., Kisi, O., Zounemat-Kermani, M., Salazar, G. A., and Gong, W. (2016). Solar radiation prediction using different techniques: Model evaluation and comparison. Renewable and Sustainable Energy Reviews, 61, 384-397. https://doi.org/10.1016/j.rser.2016.04.024 DOI: https://doi.org/10.1016/j.rser.2016.04.024
Melhem, R. and Shaker, Y. (2023). Optimum tilt angle and solar radiation of photovoltaic modules for gulf collaboration council countries. International Journal of Energy Research, 2023, 1-17. https://doi.org/10.1155/2023/8381696 DOI: https://doi.org/10.1155/2023/8381696
Nguyen, K. C., Katzfey, J., Riedl, J., and Troccoli, A. (2017). Potential impacts of solar arrays on regional climate and on array efficiency. International Journal of Climatology, 37(11), 4053-4064. https://doi.org/10.1002/joc.4995 DOI: https://doi.org/10.1002/joc.4995
Nur, A. R., Jaya, A. K., and Siswanto, S. (2023). Comparative analysis of ridge, lasso, and elastic net regularization approaches in handling multicollinearity for infant mortality data in south sulawesi. Jurnal Matematika, Statistika Dan Komputasi, 20(2), 311-319. https://doi.org/10.20956/j.v20i2.31632 DOI: https://doi.org/10.20956/j.v20i2.31632
Oladunjoye, O. O., Olasoji, Y. O., Adedeji, K. B., Oladunjoye, O. A., and Olebu, C. (2022). A solar energy control system for on-grid energy storage device. European Journal of Electrical Engineering and Computer Science, 6(3), 1-6. https://doi.org/10.24018/ejece.2022.6.3.429 DOI: https://doi.org/10.24018/ejece.2022.6.3.429
Ortega, J. L., and Aguillo, I. F. (2014). Mapping academic collaboration in Europe using Google Scholar citations. Journal of Informetrics, 8(3), 654662. https://doi.org/10.1016/j.joi.2014.04.005 DOI: https://doi.org/10.1016/j.joi.2014.04.005
Pathak, J., Subramanian, S., Harrington, P. d. B., Raja, S. K. S., Chattopadhyay, A., Mardani, M., and Anandkumar, A. (2022). Fourcastnet: a global data-driven high-resolution weather model using adaptive fourier neural operators. https://doi.org/10.48550/arxiv.2202.11214
Radovan, A., unde, V., Kuak, D., and Ban, . (2021). Solar irradiance forecast based on cloud movement prediction. Energies, 14(13), 3775. https://doi.org/10.3390/en14133775 DOI: https://doi.org/10.3390/en14133775
Rady, E. A. and Mahmoud, H. (2018). Modeling of biological data based on regression methods. Zagazig Veterinary Journal, 46(2), 146-153. https://doi.org/10.21608/zvjz.2018.14387 DOI: https://doi.org/10.21608/zvjz.2018.14387
Rojas-Campos, A., Langguth, M., Wittenbrink, M., and Pipa, G. (2022). Deep learning models for generation of precipitation maps based on numerical weather prediction.. https://doi.org/10.5194/egusphere-2022-648 DOI: https://doi.org/10.5194/egusphere-2022-648
Sansine, V., Ortega, P., Hissel, D., and Ferrucci, F. (2023). Hybrid deep learning model for mean hourly irradiance probabilistic forecasting. Atmosphere, 14(7), 1192. DOI: https://doi.org/10.3390/atmos14071192
Santos, D. S. d. O., Neto, P. S. G. d. M., Oliveira, J. F. L. d., Siqueira, H. V., Barchi, T. M., Lima, A. R., and Marinho, M. H. N. (2022). Solar irradiance forecasting using dynamic ensemble selection. Applied Sciences, 12(7), 3510. https://doi.org/10.3390/app12073510 DOI: https://doi.org/10.3390/app12073510
Seo, Y. A. and Cha, J. (2023). Precipitation probability prediction through NWP bias correction for south korea using random forest. International Journal on Advanced Science, Engineering and Information Technology, 13(3), 935-942. https://doi.org/10.18517/ijaseit.13.3.18224 DOI: https://doi.org/10.18517/ijaseit.13.3.18224
Smilevski, M. (2020). Applying recent advances in Visual Question Answering to Record Linkage. arXiv preprint arXiv:2007.05881.
Sobrina, S., Koohi-Kamali, S., and Rahim, N. A. (2018). Solar photovoltaic generation forecasting methods: A review. Energy Conversion and Management, 156, 459-497. https://doi.org/10.1016/j.enconman.2017.11.019 DOI: https://doi.org/10.1016/j.enconman.2017.11.019
Soni, V. K., Pandithurai, G., and Pai, D. S. (2011). Evaluation of longterm changes of solar radiation in india. International Journal of Climatology, 32(4), 540-551. https://doi.org/10.1002/joc.2294 DOI: https://doi.org/10.1002/joc.2294
Sutikno, S., Cahyoko, F. D., Putra, F. W., Makmur, E. E. S., Hanggoro, W., Taufik, M. R., and Aza, V. (2024). Calibration Indonesian-numerical weather prediction using geostatistical output perturbation. Jurnal Meteorologi Dan Geofisika, 24(2), 105-113. https://doi.org/10.31172/jmg.v24i2.1037 DOI: https://doi.org/10.31172/jmg.v24i2.1037
Sweeney, C., Bessa, R. J., Browell, J., and Pinson, P. (2019). The future of forecasting for renewable energy: Perspectives and challenges. WIREs Energy and Environment, 8(3), e365. https://doi.org/10.1002/wene.365 DOI: https://doi.org/10.1002/wene.365
Tang, Q., Zhang, H., & Gong, S. (2020). Bayesian regularized quantile regression analysis based on asymmetric laplace distribution. Journal of Applied Mathematics and Physics, 08(01), 70-84. https://doi.org/10.4236/jamp.2020.81006 DOI: https://doi.org/10.4236/jamp.2020.81006
Tian, Y., Zhao, Y., Li, J., Chen, B., Deng, L., and Wen, D. (2024). East asia atmospheric river forecast with a deep learning method: ganunet. Journal of Geophysical Research: Atmospheres, 129(5). https://doi.org/10.1029/2023jd039311 DOI: https://doi.org/10.1029/2023JD039311
Trapero, J. R., Kourentzes, N., and Martn, A. (2015). Short-term solar irradiation forecasting based on dynamic harmonic regression. Energy, 84, 289-295. https://doi.org/10.1016/j.energy.2015.02.100 DOI: https://doi.org/10.1016/j.energy.2015.02.100
Trojkov, A., Mile, M., and Tudor, M. (2019). Observation preprocessing system for rc lace (oplace). Advances in Science and Research, 16, 223-228. https://doi.org/10.5194/asr-16-223-2019 DOI: https://doi.org/10.5194/asr-16-223-2019
Wang, H., Liu, Y., Zhou, B., and Li, C. (2020). Taxonomy research of artificial intelligence for deterministic solar power forecasting. Energy Conversion and Management, 214, 112909. https://doi.org/10.1016/j.enconman.2020.112909 DOI: https://doi.org/10.1016/j.enconman.2020.112909
Watagoda, L. C. R. P., Arnholt, A. T., & Don, H. S. R. A. (2021). hrlr regression. RMS: Research in Mathematics &Amp; Statistics, 8(1). https://doi.org/10.1080/27658449.2021.1921904 DOI: https://doi.org/10.1080/27658449.2021.1921904
Xin, S. J. and Khalid, K. (2018). Modelling house price using ridge regression and lasso regression. International Journal of Engineering &Amp; Technology, 7(4.30), 498. https://doi.org/10.14419/ijet.v7i4.30.22378 DOI: https://doi.org/10.14419/ijet.v7i4.30.22378
Xu, M. (2024). Sales prediction based on lasso regression. Highlights in Science, Engineering and Technology, 88, 343-349. https://doi.org/10.54097/p9hyrk70 DOI: https://doi.org/10.54097/p9hyrk70
Voyant, C., Notton, G., Kalogirou, S., Nivet, M.-L., Paoli, C., Motte, F., and Fouilloy, A. (2017). Machine learning methods for solar radiation forecasting: A review. Renewable Energy, 105, 569-582. https://doi.org/10.1016/j.renene.2016.12.095 DOI: https://doi.org/10.1016/j.renene.2016.12.095
Yang, D., Kleissl, J., Gueymard, C. A., Pedro, H. T. C., and Coimbra, C. F. M. (2018). History and trends in solar irradiance and PV power forecasting: A preliminary assessment and review using text mining. Solar Energy, 168, 60-101. https://doi.org/10.1016/j.solener.2017.11.023 DOI: https://doi.org/10.1016/j.solener.2017.11.023
Zhang, L., Wang, S., Yu, Z., He, C., and Jin, X. (2014). Development of an instant correction and display system of numerical weather prediction products in china. Chinese Geographical Science, 24(6), 682-693. https://doi.org/10.1007/s11769-014-0672-7 DOI: https://doi.org/10.1007/s11769-014-0672-7
Zhang, T., Cheng, C., and Gao, P. (2019). Permutation entropy-based analysis of temperature complexity spatial-temporal variation and its driving factors in china. Entropy, 21(10), 1001. https://doi.org/10.3390/e21101001 DOI: https://doi.org/10.3390/e21101001
Zhang, Y., and Wang, J. (2019). A review of solar irradiance forecasting methods. Renewable and Sustainable Energy Reviews, 101, 1-12.
Zhang, Z., Zhang, T., Zhang, R., Zhu, X., Wu, X., Tan, S., & Jian, Z. (2024). Predicting colorectal cancer risk: a novel approach using anemia and blood test markers. Frontiers in Oncology, 14. https://doi.org/10.3389/fonc.2024.1347058 DOI: https://doi.org/10.3389/fonc.2024.1347058
Zhao, L. and Lu, F. (2014). Study on effects of solar generation on power grid. Advanced Materials Research, 986-987, 560-563. https://doi.org/10.4028/www.scientific.net/amr.986-987.560 DOI: https://doi.org/10.4028/www.scientific.net/AMR.986-987.560
Zhu, H., Li, X., Sun, Q., Nie, L., Yao, J., and Zhao, G. (2015). A power prediction method for photovoltaic power plant based on wavelet decomposition and artificial neural networks. Energies, 9(1), 11. DOI: https://doi.org/10.3390/en9010011
Zwane, N., Tazvinga, H., Botai, C., Murambadoro, M., Botai, J., De Wit, J., ... and Mabhaudhi, T. (2022). A bibliometric analysis of solar energy forecasting studies in Africa. Energies, 15(15), 5520. DOI: https://doi.org/10.3390/en15155520
Copyright (c) 2024 FUDMA JOURNAL OF SCIENCES
This work is licensed under a Creative Commons Attribution 4.0 International License.
FUDMA Journal of Sciences