INVESTIGATION OF MECHANICAL PROPERTIES OF COW BONE AND POULTRY FEATHER REINFORCED rLDPE COMPOSITES FOR SUSTAINABLE MATERIAL APPLICATIONS
Abstract
Materials with an unusual mix of properties which cannot be satisfied by traditional polymeric materials are increasingly researched alongside the conversion of waste to wealth, promoting the sustainability of engineering materials. This study investigated the mechanical properties of cow bone (CB) and pyrolyzed poultry feather (PF) reinforced recycled low-density polyethene (rLDPE) composites to assess their suitability as substitutes for conventional polymers in industrial applications. CB was crushed and blended at different ratios with PF in an rLDPE matrix obtained from waste sachet water packs. The composites were developed and tested for hardness, tensile, flexural and impact strength as well as moisture absorption. Results obtained from the mechanical tests showed that the composite with 70% rLDPE and 30% PF resulted in the highest tensile strength and Shore-D hardness of 6.42 MPa and 94 respectively. The composite having 70% rLDPE and 30% CB resulted in the highest flexural strength of 10.81 MPa while the composite with 80% rLDPE and 20% CB absorbed the highest impact energy of 3.07 J. All samples except the composite having 70% rLDPE, 20% CB and 10% PF absorbed less than 5% moisture. The developed composites showed good lightweight characteristics with density values ranging from 0.74 g/cm3 to 1.07 g/cm3. Compared to traditional polymers, these composites offer improved sustainability and moderate mechanical properties but may have lower durability unless treated for moisture resistance. They can serve as cheap substitutes for synthetic polymers used in the manufacture of casings and packaging materials in the electronics, beverage and automobile industries.
References
Abdulrahman, S. A., Ekemhe, E. A., & Ubi, P. A. (2015). Mechanical properties of Luffa Cylindrica reinforced Bio-Composite. International Journal of Current Research, 7(4), 14460–14464.
Adah, P. U., Nuhu, A. A., Salawu, A. A., Hassan, A. B., & Ubi, P. A. (2024). Characterization of periwinkle shell ash reinforced polymer composite for automotive application. FUDMA Journal of Sciences, 8(1), 83–92. https://doi.org/10.33003/fjs-2024-0801-2158 DOI: https://doi.org/10.33003/fjs-2024-0801-2158
Ajao, K. S., Abdulrahman, A. S., & Abdulkareem, A. S. (2024). Mechanical properties and microstructure of epoxy, horn, alkaline treated/untreated coconut shell particulates hybrid composite. FUDMA Journal of Sciences, 8(3), 214–221. https://doi.org/10.33003/fjs-2024-0803-2464
Akinwekomi, A. D., Oladele, I. O., Onuh, L. N., Essien, E. E., Agbeboh, N. I., & Idris, M. O. (2024). Development and Characterization of Hybrid Particulate-fiber Reinforced Epoxy Composites. Applied Science and Engineering Progress. https://doi.org/10.14416/j.asep.2024.06.001 DOI: https://doi.org/10.14416/j.asep.2024.06.001
Anosike-Francis, E. N., Ubi, P. A., Obianyo, I. I., Kalu-Uka, G. M., Bello, A., Ofem, M. I., Olorunnisola, A. O., & Onwualu, A. P. (2022). Mechanical and Thermomechanical Properties of Clay-Cowpea (Vigna Unguiculata Walp.) Husks Polyester Bio-Composite for Building Applications. Applied Sciences, 12(2), 713. https://doi.org/10.3390/app12020713 DOI: https://doi.org/10.3390/app12020713
Chandran, A. J., Rangappa, S. M., Suyambulingam, I., & Siengchin, S. (2024). Waste chicken feather biofiller reinforced bioepoxy resin based biocomposites — A waste to wealth experimental approach. International Journal of Biological Macromolecules, 261, 129708. https://doi.org/10.1016/j.ijbiomac.2024.129708 DOI: https://doi.org/10.1016/j.ijbiomac.2024.129708
Dakarapu, S. R., Karri, S. R., & Ampolu, L. S. P. (2023). Mechanical and water absorption properties of polymer composites reinforced with animal bone powder. Journal of Physics: Conference Series, 2604(1), 012004. https://doi.org/10.1088/1742-6596/2604/1/012004 DOI: https://doi.org/10.1088/1742-6596/2604/1/012004
Darmawan, S., Sofyan, K., Pari, G., & Sugiyanto, K. (2010). Effect of Activated Charcoal Addition on Formaldehyde Emission of Medium Density Fiberboard. Indonesian Journal of Forestry Research, 7(2), 100–111. https://doi.org/10.20886/ijfr.2010.7.2.100-111 DOI: https://doi.org/10.20886/ijfr.2010.7.2.100-111
Eichhorn, S. J., Baillie, C. A., Zafeiropoulos, N., Mwaikambo, L. Y., Ansell, M. P., Dufresne, A., Entwistle, K. M., Herrera-Franco, P. J., Escamilla, G. C., Groom, L., Hughes, M., Hill, C., Rials, T. G., & Wild, P. M. (2001). Review: Current international research into cellulosic fibres and composites. Journal of Materials Science, 36(9), 2107–2131. https://doi.org/10.1023/A:1017512029696 DOI: https://doi.org/10.1023/A:1017512029696
Hussein, A. A., Sultan, A. A., & Matoq, Q. A. (2011). Mechanical behaviour of Low Density Polyethylene / Shrimp Shells Composite. Journal of Basrah Researches (Sciences), 37(3A), 5–11.
Jayabal, S., Sathiyamurthy, S., Loganathan, K. T., & Kalyanasundaram, S. (2012). Effect of soaking time and concentration of NaOH solution on mechanical properties of coir–polyester composites. Bulletin of Materials Science, 35(4), 567–574. https://doi.org/10.1007/s12034-012-0334-2 DOI: https://doi.org/10.1007/s12034-012-0334-2
Kalia, S., Dufresne, A., Cherian, B. M., Kaith, B. S., Avérous, L., Njuguna, J., & Nassiopoulos, E. (2011). Cellulose-Based Bio- and Nanocomposites: A Review. International Journal of Polymer Science, 2011, 1–35. https://doi.org/10.1155/2011/837875 DOI: https://doi.org/10.1155/2011/837875
Kumar, S., Prasad, L., & Pate, V. K. (2017). Effect of hybridization of glass/kevlar fiber on mechanical properties of bast fiber reinforced polymer composite: A Review. American Journal of Polymer Science & Engineering, 5(1), 1–11.
Norrrahim, M. N. F., Nurazzi, N. M., Knight, V. F., Farid, M. A. A., Andou, Y., Jenol, M. A., Naveen, J., Asyraf, M. R. M., & Rani, M. S. A. (2024). Cow bone as reinforcement fillers in polymer composites for structural applications. In Polymer Composites Derived from Animal Sources (pp. 277–293). Elsevier. https://doi.org/10.1016/B978-0-443-22414-0.00015-6 DOI: https://doi.org/10.1016/B978-0-443-22414-0.00015-6
Ockerman, H. W., & Hansen, C. L. (1999). Animal By-Product Processing & Utilization. CRC Press. https://doi.org/10.1201/9781482293920 DOI: https://doi.org/10.1201/9781482293920
Oladele, I. O., Omotoyimbo, J. A., & Ayemidejor, S. H. (2014). Mechanical Properties of Chicken Feather and Cow Hair Fibre Reinforced High Density Polyethylene Composites. International Journal of Science and Technology , 3(1).
Onitiri, M. A., & Ubi, P. A. (2021). Failure modes in particle filled plastic matrix composites. Journal of Engineering, Science, and Technology, 5(1), 79–96.
Plastics Europe. (2022, October). Plastics – the Facts 2022. Plastic Europe. https://plasticseurope.org/wp-content/uploads/2022/10/PE-PLASTICS-THE-FACTS_V7-Tue_19-10-1.pdf
Poole, A. J., Church, J. S., & Huson, M. G. (2009). Environmentally Sustainable Fibers from Regenerated Protein. Biomacromolecules, 10(1), 1–8. https://doi.org/10.1021/bm8010648 DOI: https://doi.org/10.1021/bm8010648
Rachtanapun, P. (2015). Effect of activated carbon on physical and mechanical properties of composites from eucalyptus particles [Chiang Mai University]. https://kukr.lib.ku.ac.th/kukr_es/index.php?/BKN/search_detail/dowload_digital_file/11604/101 253
Salleh, Z., Islam, M. M., & Ku, H. (2013). Tensile behaviours of activated carbon coconut shell filled epoxy composites. In M. M. Noor, M. M. Rahman, & J. Ismai (Eds.), 3rd Malaysian Postgraduate Conference (pp. 22–27).
Sapuan, S. M., Siddiqui, V. U., bin Zulkiflee, U. A., bin Ayob, A. M., Fadzlin, M., & bin Md Fadzli, A. (2024). Chicken feather–reinforced polymer composites. In Polymer Composites Derived from Animal Sources (pp. 89–102). Elsevier. https://doi.org/10.1016/B978-0-443-22414-0.00005-3 DOI: https://doi.org/10.1016/B978-0-443-22414-0.00005-3
Schmidt, W. F., & Jayasundera, S. (2004). Microcrystalline Avian Keratin Protein Fibers. In Natural Fibers, Plastics and Composites (pp. 51–66). Springer US. https://doi.org/10.1007/978-1-4419-9050-1_4 DOI: https://doi.org/10.1007/978-1-4419-9050-1_4
Talabi, S. I., Oladipo, W., Odetoyinbo, I., Phadatare, A., Elyas, S., Vaidya, U., & Hassen, A. A. (2024). Epoxy resin reinforced with carbonized chicken feathers: An innovative composite material with sustainable potentials. Journal of Composite Materials. https://doi.org/10.1177/00219983241276933 DOI: https://doi.org/10.1177/00219983241276933
Ubi, P. A., & Abdulrahman, A. S. (2015). Effect of sodium hydroxide treatment on the mechanical properties of crushed and uncrushed luffa cylindrica fibre reinforced rLDPE composites. International Journal of Chemical, Nuclear, Materials and Metallurgical Engineering, 9(1), 203–208.
Ubi, P. A., Ademoh, N. A., Anosike-Francis, E. N., Salawu, A. A., Adeleke, A. A., Okoro, U. G., Abdullahi, A. A., & Ngolemasango, F. (2024). Rice husk silica blended fillers for engine mount application. Scientific Reports, 14(1), 3055. https://doi.org/10.1038/s41598-024-53742-5 DOI: https://doi.org/10.1038/s41598-024-53742-5
Ubi, P. A., Anosike-Francis, E. N., Agbonko, E. B., Omoyi, C. O., Nwigwe, E. E., Agba, A. I., Itam, D. H., & Rowland Ana, R. (2023). Rice Husk-Derived Silica: A Sustainable Alternative to Traditional Fillers in Elastomeric Composites. 2023 2nd International Conference on Multidisciplinary Engineering and Applied Science (ICMEAS), 1–7. https://doi.org/10.1109/ICMEAS58693.2023.10429842 DOI: https://doi.org/10.1109/ICMEAS58693.2023.10429842
Yawas, D. S., Aku, S. Y., & Amaren, S. G. (2016). Morphology and properties of periwinkle shell asbestos-free brake pad. Journal of King Saud University - Engineering Sciences, 28(1), 103–109. https://doi.org/10.1016/j.jksues.2013.11.002 DOI: https://doi.org/10.1016/j.jksues.2013.11.002
Copyright (c) 2024 FUDMA JOURNAL OF SCIENCES
This work is licensed under a Creative Commons Attribution 4.0 International License.
FUDMA Journal of Sciences