MILK-DERIVED BIOACTIVE PEPTIDES WITH ANTIOSTEOPOROTIC EFFECT: A MINI REVIEW

  • Sanusi Bello Mada Department of Biochemistry, Ahmadu Bello University Zaria-Nigeria
  • Philip Cefas Abaya
  • Dorcas Bolanle James Department of Biochemistry, Ahmadu Bello University Zaria, Nigeria.
  • Muawiya Musa Abarshi Department of Biochemistry, Ahmadu Bello University Zaria, Nigeria
  • Muhammad Said Tanko Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Ahmadu Bello University Zaria, Nigeria.
Keywords: Postmenopausal osteoporosis, Osteoblasts differentiation, Milk-derived peptides, Antiosteoporotic effect, Mechanism of action

Abstract

Postmenopausal osteoporosis is a global health problem characterized by decreased in bone mineral density (BMD) and progressive deterioration of microarchitecture and subsequent increase in bone fragility and susceptibility to fracture.  More than 200 million people suffer from osteoporosis worldwide  with about 8.9 million fractures and the prevalence rate of osteoporosis is expected to increase significantly in the future because of increased in life expectancy and aging population. Milk-derived bioactive peptides from cow, goat, sheep, buffalo, and camel exhibit several potential health promoting effect including antiosteoporosis, antihypertensive, antioxidative, antithrombotic, immunomodulatory and anti-inflammatory effects. Epidemiological and intervention studies have shown that milk and milk-derived peptides prevented bone loss in pre- and postmenopausal women. Moreover, quite a lot of studies have reported that milk-derived bioactive peptides can induce osteoblast cell proliferation, differentiation and also prevented bone loss in osteoporotic rats model. Thus, milk-derived peptides exhibits beneficial effect against bone-related diseases and can be of particular interest towards prevention and management of postmenopausal osteoporosis. Hence, the present review summarizes various studies using ISI, SCOPUS and PubMed indexed journals to elucidate the potential role of milk-derived bioactive peptides with in vitro and in vivo antiosteoporotic property

References

Ahn, C.B. and Je, J.Y. (2019). Bone health-promoting bioactive peptides. J. Food Biochem., 43:e12529.

Baek, K.H., Oh, K.W., Lee, W.Y., Tae, H.J., Rhee, E.J., Han, E.J. et al. (2006). Changes in the serum sex steroids, IL-7 and RANKL-OPG system after bone marrow transplantation: influences on bone and mineral metabolism. Bone, 39:1352–1360.

Bamdad, F., Shin, S.H., Suh, J., Nimalaratne, C. and Sunwoo, H. (2017). Antiinflammatory and antioxidant properties of casein hydrolysates produced using high hydrostatic pressure combined with proteolytic enzymes. Molecules, 22:609.

Bandyopadhyay, S., Lion, J.M., Mentaverri, R., Ricupero, D.A., Kamel, S., Romero, J.R. et al. (2006). Attenuation of osteoclastogenesis and osteoclast function by apigenin. Biochem. Pharmacol., 72:184–197.

Behera, P.S., Kumar, R., Sandeep, I.V.R., Kapila, R., Dang, A.K. and Kapila, S. (2013). Casein hydrolysates enhances osteoblast proliferation and differentiation in mouse bone marrow culture. Food Biosci., 2:24–30.

Boga, S., Bouzada, D., Pena, D.G., Lopez, M.V. and Vazquez, M.E. (2018). Sequence-specific DNA recognition with designed peptides. Eur. J. Org. Chem. 3:249–261.

Chahardoli, M., Fazeli, A., Niazi, A. and Ghabooli, M. (2018). Recombinant expression of LF chimera antimicrobial Peptide in a plant-based expression systems and its antimicrobial activity against clinical and phytopathogenic bacteria. Biotechnol. Biotechnol. Equip., 32:714–723.

Chaudhari, D.D., Singh, R., Mallappa, R.H., Rokana, N., Kaushik, J.K., Bajaj, R., et al. (2017). Evaluation of casein and whey protein hydrolysates as well as milk fermentates from Lactobacillus helveticus for expression of gut hormones. Indian J. Med. Res., 146:409–419.

Chee, W.S.S., Suriah, A.R., Chan, S.P., Zaitun, Y. and Chan, Y.M. (2003). The effect of milk supplementation on bone mineral density in postmenopausal Chinese women in Malaysia. Osteoporos. Int., 14:828–834.

De-Brito, R.C.F., Cardoso, J.M.D.O., Reis, L.E.S., Vieira, J.F., Mathias, F.A.S., Roatt, B.M., et al. (2018).Peptide vaccines for leishmaniasis. Front. Immunol., 9:1043.

Di-Bernardini, R., Rai, D.K., Bolton, D., Kerry, J., Eileen, O., Mullen, A.M., et al. (2011). Isolation, purification and characterization of antioxidant peptidic fractions from a bovine a liver sarcoplasmic protein thermolysin hydrolysate. Peptides, 32:388–400.

Espita, P.J.P., De-Fátima, N.F.S., Coimbra, J.S.R., Andrade, N.J., Cruz, R.S. and Medeiros, E.A.A. (2009). Zinc oxide nanoparticles: synthesis, antimicrobial activity and food packaging applications. Food Bioprocess. Technol., 5:1447–1464.

Farr, J.N., Khosla, S., Miyabara, Y., Miller, V.M. and Kearns, A.E. (2013). Effects of four years of oral or transdermal estrogen with micronized progesterone therapy on cortical versus trabecular in recently Postmenopausal Women. J. Clin. Endocrinol. Metab., 98:e249–57.

Guillerminet, F., Beaupied, H., Fabien-Soule, V., Tom, D., Benhamou, C.L., Roux, C. et al. (2010). Hydrolyzed collagen improves bone metabolism and biomechanical parameters in ovariectomized mice: An in vitro and in vivo study. Bone, 46(3):827–834.

Haque, E., Chand, R. and Kapila, S. (2009). Biofunctional properties of bioactive peptides of milk origin. Food Rev. Int., 25:28–43.

Hernandez-Ledesma, B., Contreras, M. and Recio, I. (2011). Antihypertensive peptides: production, bioavailability and incorporation into foods. Adv. Colloid. Interface Sci., 165:23–35.

Hernandez-Ledesma, B., Garcia-Nebot, M.J., Fernandez-Tome, S., Amigo, L. and Recio, I. (2014). Dairy protein hydrolysates: peptides for health benefits. Int. Dairy J., 38:82–100.

Hernlund, E., Svedbom, A., Ivergård, M., Compston, J., Cooper, C., Stenmark. J, et al. (2013). Osteoporosis in the European Union: medical management, epidemiology and economic burden. A report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA). Arch. Osteoporos., 8(1-2):136.

Huttunen, M.M., Pekkinen, M., Ahlstrom, M.E. and Lamberg-Allardt, C.J. (2008). Long-term effects of tripeptide Ile-Pro-Pro on osteoblast differentiation in vitro. J. Nutr. Biochem., 19(10):708–715.

Huttunen, M.M., Pekkinen, M., Ahlstrom, M.E. and Lamberg-Allardt, C.J. (2007). Effects of bioactive peptides isoleucine-proline-proline (IPP), valine-proline-proline (VPP) and leucine-lysine-proline (LKP) on gene expression of osteoblasts differentiated from human mesenchymal stem cells. Br. J. Nutr., 98(04):780–788.

Juillard, V., Guillot, A., Le-Bars, D. and Gripon, J.C. (1998). Specificity of milk peptide utilization by Lactococcuslactis. Appl. Environ. Microbiol., 64:1230.

Kandukuri, S., Bhat, M.I., Bajaj, R.K., Kapila, S. and Kapila, R. (2018). Buffalo milk casein derived decapeptide (YQEPVLGPVR) having bifunctional anti-inflammatory and antioxidative features under cellular milieu. Int. J. Pept. Res. Ther. https://doi.org/10.1007/s1098 9-018-9708-7.

Khedgikar, V., Ahmad, N., Kushwaha, P., Gautam, J., Nagar, G.K., Singh, D. et al. (2015). Preventive effects of withaferin A isolated from the leaves of an Indian medicinal plant Withania somnifera (L.): comparisons with 17-β–estradiol and alendronate. Nutrition, 31(1):205–213.

Kitts, D.D. and Weiler, K. (2003). Bioactive proteins and peptides from food sources. Applications of bioprocesses used in isolation and recovery. Curr. Pharm. Des., 9:1309–1323.

Korhonen, H. and Pihlanto, A. (20060. Bioactive peptides: production and functionality. Int. Dairy J., 16:945–60.

Kumar, D., Chatli, M.K., Singh, R., Mehta, N. and Kumar, P. (2016). Enzymatic hydrolysis of camel milk casein and its antioxidant properties. Dairy Sci. Technol., l96:391–404.

Kuo, T.R. and Chen, C.H. (2017). Bone biomarker for the clinical assessment of osteoporosis: recent developments and future perspectives. Biomark. Res., 5:18.

Lemes, A.C., Sala, L., Ores, J.D.C., Braga, A.R.C., Egea, M.B. and Fernandes, K.F. (2016). A review of the latest advances in encrypted bioactive peptides from protein-rich waste. Int. J. Mol. Sci., 17:950.

Lin, K., Zhang, L., Han, X., Xin, L., Meng, Z., Gong, P., et al. (2018). Yak milk casein as potential precursor of angiotensin-I-converting enzyme inhibitory peptides based on in silico proteolysis. Food Chem., 254:340–347.

Mada, S.B., Reddi, S., Kumar, N., Kapila, R., Kapila, S., Ahmad, N., et al. (2017). Antioxidative peptide from milk exhibits antiosteopenic effects through inhibition of oxidative damage and boneresorbing cytokines in ovariectomized rats. Nutrition, 43:21–31.

Mada, S.B., Reddi, S., Kumar, N., Kapila, S. and Kapila, R. (2017). Protective effects of casein-derived peptide VLPVPQK against hydrogen peroxide-induced dysfunction and cellular oxidative damage in rat osteoblastic cells. Hum. Exp. Toxicol., 36(4):1-14.

Mada, S.B., Reddi, S., Kumar, N., Vij, R., Yadav, R., Kapila, S. et al. (2018). Casein-derived antioxidative peptide prevents oxidative stress-induced dysfunction in osteoblast cells. PharmaNutrition, 6(4):169-179.

Mada, S.B., Ugwu, C.P., Abarshi, M.M. and Saliu, M.A. (2020). Renin-inhibitory Bioactive Peptides With Antihypertensive Property: A Review. FUDMA J. Sci., 4(2):478 – 489.

Manolagas, S.C. (2010). From estrogen-centric to aging and oxidative stress: a revised perspective of the pathogenesis of osteoporosis. Endocr. Rev. 31:266–300.

Mellander, O. (1950). The physiological importance of the casein phosphopeptide calcium salts. II. Peroral calcium dosage of infants. Acta. Soc. Med. Ups., 55(5–6):247–255.

Minisola, S., Cipriani, C., Occhiuto, M. and Pepe, J. (2017). New anabolic therapies for osteoporosis. Intern. Emerg. Med., 12(7):915–921.

Mirzaei, M., Mirdamadi, S. and Ehsani, M.R. (2018). Aminlari M. Production of antioxidant and ACE-inhibitory peptides from Kluyveromyces marxianus protein hydrolysates: purification and molecular docking. J. Food Drug Anal., 2(6)6:696–705.

Mohanty, D.P., Mohapatra, S., Misra, S. and Sahu, P.S. (2016). Milk derived bioactive peptides and their impact on human health—a review. Saudi J. Biol. Sci., 23(5):577–583.

Muhammad, A., Mada, S.B., Malami, I., Forcados, G.E., Erukainure, O.L., Sani, H. et al. (2018). Postmenopausal osteoporosis and breast cancer: the biochemical links and beneficial effects of functional foods. Biomed. Pharmacother.,107:571–582.

Nakamura,Y., Yamamoto, N., Sakai, K. and Takano, T. (1995). Antihypertensive effect of sour milk and peptides isolated from it that are inhibitors of angiotensin-I-converting enzyme. J. Dairy Sci.,78:1253–1257.

Narva, M., Collin, M., Lamberg-Allardt, C., Karkkainen, M., Poussa, T., Vapaatalo, H., et al. (2004). Effects of long-term intervention with Lactobacillus helveticus-fermented milk on bone mineral density and bone mineral content in growing rats. Ann. Nutr. Metab., 48(4):228–234.

Narva, M., Nevala, R., Poussa, T. and Korpela, R. (2004). The effect of Lactobacillus helveticus fermented milk on acute changes in calcium metabolism in postmenopausal women. Eur. J. Nutr., 43(2): 61–68.

Palaniswamy, M., Angayarkanni, J. and Nandhini, B. (2012). Angiotensin converting enzyme inhibitory activity and antioxidant properties of goat milk hydrolysates. Int. J. Pharm. Pharm. Sci., 4:367–370.

Phelan, M., Aherne, A., FitzGerald, R.J. and O’Brien, N.M. (2009). Casein- derived bioactive peptides: Biological effects, industrial uses, safety aspects and regulatory status. Int. Dairy J., 19:643–654.

Quirós, A., Ramos, M., Muguerza, B., Delgado, M.A., Miguel, M., Aleixandre, A., et al. (2007). Identification of Novel antihypertensive peptides in milk fermented with Enterococcus faecalis. Int. Dairy. J., 17:33–41.

Rachner, T.D., Khosla, S. and Hofbauer, L.C. (2011). Osteoporosis: now and the future. Lancet, 377:1276–1287.

Reddi, S., Kumar, N., Vij, R., Mada, S.B., Kapila, S. and Kapila, R. (2016). Akt drives buffalo casein-derived novel peptide-mediated osteoblast differentiation. J. Nutr. Biochem., 38:134–144.

Reddi, S., Mada, S.B., Kumar, N., Kapila, R., Kapila, S., Ahmad, N., et al. (2019). Antiosteopenic effect of buffalo milk casein-derived peptide (NAVPITPTL) in ovariectomized rats. Int. J. Pept. Res. Ther., 25(3)1147-1158.

Reddi, S., Shanmugam, V.P., Kapila, S. and Kapila, R. (2016). Identification of buffalo casein-derived bioactive peptides with osteoblast proliferation activity. Eur. Food Res. Tech., 242(12): 2139–2146.

Sánchez, A. and Vázquez, A. (2017). Bioactive peptides: A review. Food Qual. Saf., 1:29–46. doi:10.1093/fqs/fyx006.

Schrimpf, A., Hempel, F., Li, A., Linne, U., Maier, U.G., Reetz, M.T., et al. (2018). Hinge-type dimerization of proteins by a tetracysteine peptide of high pairing specificity. Biochemistry, 57:3658–3665.

Shahidi, F. and Zhong, Y. (2008). Bioactive peptides. J. AOAC Int., 91:914–931.

Sharma, S., Singh, R. and Rana, S. (2011). Bioactive peptides: a review. Int. J. Bioautomotion, 15:223–250.

Silva, S.V. and Malcata, F. X. (2005). Caseins as source of bioactive peptides. Int. Dairy J., 15:1–15.

Tsuchita, H., Goto, T., Shimizu, T., Yonehara, Y. and Kuwata, T. (1996). Dietary casein phosphopeptides prevent bone loss in aged ovariectomized rats. J. Nutr., 126(1):86-93.

Ugwu, C.P., Abarshi, M.M., Mada, S.B., Sanusi, B. and Nzelibe, H.C. (2019). Camel and horse milk casein hydrolysates exhibit angiotensin converting enzyme inhibitory and antioxidative effects in vitro and in silico. Int. J. Pept. Res. Ther., 19(4):1573–3139.

Walther, B. and Sieber, R. (2011). Bioactive proteins and peptides in foods. Int. J. Vitam. Nutr. Res., 81:181–191.

Wengreen, H.J., Munger, R.G., West, N.A., Cutler, D.R., Corcoran, C.D., Zhang, J., et al. (2004). Dietary protein intake and risk of osteoporotic hip fracture in elderly residents of Utah. J. Bone Miner. Res., 19:537–545.

Wu, C.J. and Lu, H.K. (2008). Smad signal pathway in BMP-2-induced osteogenesis a mini review. J. Dent. Sci.,3(1):13–21.

Yahya, M.A., Alhaj, O.A. and Al-Khalifa, A.S. (2017) Antihypertensive effect of fermented skim camel (Camelus dromedaries) milk on spontaneously hypertensive rats. Nutri. Hosp., 34(2):416–421.

Published
2020-09-24
How to Cite
MadaS. B., AbayaP. C., JamesD. B., AbarshiM. M., & TankoM. S. (2020). MILK-DERIVED BIOACTIVE PEPTIDES WITH ANTIOSTEOPOROTIC EFFECT: A MINI REVIEW. FUDMA JOURNAL OF SCIENCES, 4(3), 351 - 357. https://doi.org/10.33003/fjs-2020-0403-277