MACHINE LEARNING MODELS FOR CLASSIFICATION AND PREDICTION OF PREECLAMPSIA IN KADUNA, NIGERIA
Abstract
Preeclampsia is a significant complication in pregnancy characterized by high blood pressure and damage to organs, posing serious risks to both the mother and fetus. Early prediction and management are crucial for improving outcomes. In Nigeria, where healthcare resources are often limited, and prenatal care access can be uneven, advanced predictive models can enhance early detection and intervention. This paper developed machine learning-based classifiers and predictors of preeclampsia. The data used was collected from general hospital Hunkuyi, Kaduna state, Nigeria. The models were based on Adaboost, Support Vector Machine (SVM), and Naïve Bayes (NB) algorithms. In both classification and prediction of preeclampsia among the population studied, SVM has 0 error in MAE, RMSE, RAE and ERSE, with accuracy level of 100%. Adaboost and NB had accuracy levels of 98% and 85%, which are very good. This paper recommends the use of these models for prediction of onset of preeclampsia among pregnant women in Hunkuyi and Kaduna state. Since the data used to develop the models represent impartially the various set of people within the state, it can be used for all women. we believe the models can assist the health personnel to predict onset of preeclampsia and help proper planning and intervention. It will also reduce maternal and child mortality that could result for preëclampsia.
References
Abubakar, A., Abdullahi, R. A., Jibril, H. Z., Dauda, M. H., & Poopola, M. A. (2009). Maternal Ethnicity and Severity of Pre-Eclampsia in Northern Nigeria. Asian Journal of Medical Sciences 1(3):, 1(3), 104–107.
Akaba, G. O., Anyang, U. I., & Ekele, B. A. (2021). Prevalence and materno-fetal outcomes of preeclampsia / eclampsia amongst pregnant women at a teaching hospital in north- central Nigeria : a retrospective cross- sectional study. Clinical Hypertension, 1–10. https://doi.org/https://doi.org/10.1186/s40885-021-00178-y DOI: https://doi.org/10.1186/s40885-021-00178-y
Attahir, A., Dikko, A. A. U., Sufiyan, M. B., Salihu, A., & Rabiu, A. M. (2010). Association between Maternal Socio – economic Status , Polygamy and Risk of Pre – eclampsia in Rural Areas of Northern Nigeria. Journal of Family and Reproductive Health, 4(1), 47–52.
Aworka, R., Cedric, L. S., Adoni, W. Y. H., Zoueu, J. T., Mutombo, F. K., Kimpolo, C. L. M., Nahhal, T., & Krichen, M. (2022). Agricultural decision system based on advanced machine learning models for yield prediction: Case of East African countries. Smart Agricultural Technology, 2(December 2021), 100048. https://doi.org/10.1016/j.atech.2022.100048 DOI: https://doi.org/10.1016/j.atech.2022.100048
Chaemsaithong, P., Pooh, R. K., Zheng, M., Ma, R., Tokunaka, M., Shaw, S. W., Seshadri, S., Choolani, M., Wataganara, T., Yeo, G. S. H., Wright, A., & Leung, W. C. (2019). Prospective evaluation of screening performance of first trimester prediction models for preterm preeclampsia in Asian population. American Journal of Obstetrics and Gynecology. https://doi.org/10.1016/j.ajog.2019.09.041 DOI: https://doi.org/10.1016/j.ajog.2019.09.041
Chen, Y., Lin, T., Cheng, P., Chan, K., Huang, H., & Shaw, S. W. (2021). Taiwanese Journal of Obstetrics & Gynecology Taiwanese new direction in prediction of early pregnancy preeclampsia. Taiwanese Journal of Obstetrics & Gynecology, 60(1), 66–69. https://doi.org/10.1016/j.tjog.2020.11.009 DOI: https://doi.org/10.1016/j.tjog.2020.11.009
Chen, Y., Schisterman, E. F., Srinivasan, S., & Buck Louis, G. M. (2020). Deep learning in the prediction of preeclampsia: A novel approach. Scientific Reports, 10(1), 1-10.
Dathan-stumpf, A., Czarnowsky, V., Hein, V., Andraczek, T., & Stepan, H. (2020). Real-world data on the clinical use of angiogenic factors in pregnancies with placental dysfunction. The American Journal of Obstetrics & Gynecology, December 2017, 1–13. https://doi.org/10.1016/j.ajog.2020.10.028 DOI: https://doi.org/10.1016/j.ajog.2020.10.028
E.V., K., C., A., & M., C. (2009). Hypertensive disorders and severe obstetric morbidity in the United States. Obstet Gynecol Ogy, 113, 299–306.
Enaruna, N. O., & Sodje, J. D. (2015). Early-Onset Severe Preeclampsia in Nigerian Women : Determining a Balance between Maternal Wellbeing and Fetal Survival in a Resource-Limited Setting. British Journal of Medicine & Medical Research, 10(3), 1–9. https://doi.org/10.9734/BJMMR/2015/19217 DOI: https://doi.org/10.9734/BJMMR/2015/19217
Hastie, T., Tibshirani, R., & Friedman, J. (2017). The elements of statistical learning: data mining, inference, and prediction, PP 342-348.
Johnson, A. C., Mendoza, M., Caplice, S., & Brennecke, S. P. (2019). Recurrent neural networks in the prediction of preeclampsia onset. Scientific Reports, 9(1), 1-9.
Li, J., Li, G., Hai, C., & Guo, M. (2022). Transformer Fault Diagnosis Based on Multi-Class AdaBoost Algorithm. IEEE Access, 10, 1522–1532. https://doi.org/10.1109/ACCESS.2021.3135467 DOI: https://doi.org/10.1109/ACCESS.2021.3135467
Li, X., Wang, L., & Sung, E. (2008). AdaBoost with SVM-based component classifiers. Engineering Applications of Artificial Intelligence, 21(5), 785–795. https://doi.org/10.1016/j.engappai.2007.07.001 DOI: https://doi.org/10.1016/j.engappai.2007.07.001
Lu, M. Y., Blanchard, C. T., Oglesby, K. R., Page, M. R., Lazenby, A. J., Elizabeth B. Ausbeck1, G. D. C., Rogers, R. D. D. M., Bushman, E. T., Kaplan, E. R., Ruzic, M. F., Mahalingam, M., Dunk, S. A., Champion, M. L., Casey, B. M., Tita, A., Kim, D.-J., Szychowski, J. M., & Subramaniam, A. (2021). A prediction model for postpartum readmission for hypertension or preeclampsia. American Journal of Obstetrics & Gynecology, February, 41–42. https://doi.org/10.1016/j.ajog.2020.12.057 DOI: https://doi.org/10.1016/j.ajog.2020.12.057
Maric, I., Tsur, A., Aghaeepour, N., Montanari, A., Stevenson, D. K., Shaw, G. M., & Winn, V. D. (2020). Early prediction of preeclampsia via machine learning. Am J Obstet Gynecol, May, 1–17. https://doi.org/10.1016/j.ajogmf.2020.100100 DOI: https://doi.org/10.1016/j.ajogmf.2020.100100
Mathanker, S. K., Weckler, P. R., Bowser, T. J., Wang, N., & Maness, N. O. (2011). AdaBoost classifiers for pecan defect classification. Computers and Electronics in Agriculture, 77(1), 60–68. https://doi.org/10.1016/j.compag.2011.03.008 DOI: https://doi.org/10.1016/j.compag.2011.03.008
Melchiorre, K., Giorgione, V., & Thilaganathan, B. (2020). The placenta and preeclampsia : villain or victim ? The American Journal of Obstetrics & Gynecology, 1–9. https://doi.org/10.1016/j.ajog.2020.10.024 DOI: https://doi.org/10.1016/j.ajog.2020.10.024
Mohammed, C., Adze, J., Bature, S., Mohammed-Durosinlorun, A., Taingson, C., Abubakar, A., Airede, L. ., Onwuhafua, P., & Musa, J. (2023). Severe Preeclampsia and Eclampsia: A 3-Year Review in Barau Dikko Teaching Hospital Kaduna, Northwest Nigeria. J Med
Mou AD, Barman Z, Hasan M, Miah R, Hafsa JM, Das Trisha A, Ali N (2021): Prevalence of preeclampsia and the associated risk factors among pregnant women in Bangladesh. Sci Rep. 2021, 11:21339.10.1038/s41598-021- 00839-w DOI: https://doi.org/10.1038/s41598-021-00839-w
Myatt, L. (2020). Expert Review The prediction of preeclampsia : the way forward. The American Journal of Obstetrics & Gynecology. https://doi.org/10.1016/j.ajog.2020.10.047 DOI: https://doi.org/10.1016/j.ajog.2020.10.047
Ngwenya, S., Jones, B., Mwembe, D., Nare, H., Alexander, E., & Heazell, P. (2021). Pregnancy Hypertension : An International Journal of Women ’ s Cardiovascular Health Development and validation of risk prediction models for adverse maternal and neonatal outcomes in severe preeclampsia in a low-resource setting , Mpilo Central Hospital . Pregnancy Hypertension: An International Journal of Women’s Cardiovascular Health, 23(November 2020), 18–26. https://doi.org/10.1016/j.preghy.2020.10.011 DOI: https://doi.org/10.1016/j.preghy.2020.10.011
Okunade, K. S., Gbadegesin, A., & Akinsola, O. J. (2014). Risk Factors for Pre-eclampsia in Multiparous Women in Lagos , Nigeria. International Journal of Biomedical Research, 9633, 3–6. https://doi.org/10.7439/ijbr DOI: https://doi.org/10.7439/ijbr
Ola, D., & Suliburska, J. (2023). Risk factors of preeclampsia in Nigeria and Poland. J Obstet Gynecol Investig, May, 7–14. https://doi.org/https://doi.org/10.5114/jogi.2023.130145
Portelli, M., & Baron, B. (2018). Clinical Presentation of Preeclampsia and the Diagnostic Value of Proteins and Their Methylation Products as Biomarkers in Pregnant Women with Preeclampsia and Their Newborns. Journal of Pregnancy, 2018(Table 1). DOI: https://doi.org/10.1155/2018/2632637
Rana S, Lemoine E, Granger JP, Karumanchi SA (2019). Preeclampsia: pathophysiology, challenges, and perspectives. Circ Res., 124:1094-112. 10.1161/CIRCRESAHA.118.313276 DOI: https://doi.org/10.1161/CIRCRESAHA.118.313276
Salmi, N., & Rustam, Z. (2019). Naïve Bayes Classifier Models for Predicting the Colon Cancer. IOP Conf. Series: Materials Science and Engineering, 546. https://doi.org/10.1088/1757-899X/546/5/052068 DOI: https://doi.org/10.1088/1757-899X/546/5/052068
Schindler, A. E., & Schindler, A. E. (2018). New data about preeclampsia : some possibilities of prevention. Gynecological Endocrinology, 34(8), 636–637. https://doi.org/10.1080/09513590.2018.1441401 DOI: https://doi.org/10.1080/09513590.2018.1441401
Smith, G. C., Seaman, S. R., Wood, A. M., Royston, P., & White, I. R. (2017). Correcting for optimistic prediction in small data sets. American Journal of Epidemiology, 186(6), 777-784.
Suleman, B. ., Olayemi, O. ., Adesina, O. ., & Bankole, A. . (2022). Combination Of Spot Urine Protein-Creatinine Ratio and Uterine Artery Doppler in Predicting Preeclampsia in Ibadan : A Prospective Cohort Study. African Journal of FetoMaternal Medicine, 1(1), 31–37.
Tarca, A. L., Mph, A. T., Dmedsci, R. R., Jung, E., Paredes, C., Bhatti, G., Ghita, C., Chaiworapongsa, T., Than, N. G., & Mph, C. H. (2021). maternal characteristics and biophysical and. The American Journal of Obstetrics & Gynecology. https://doi.org/10.1016/j.ajog.2021.01.020 DOI: https://doi.org/10.1016/j.ajog.2021.01.020
Ugwu AO, Owie E, Oluwole AA, Soibi-Harry AP, Garba SR, Okunade KS, Makwe CC, Omisakin SI, Ani-Ugwu NK, Ojiefoh LG, Okafor IT, Egba A, Olatunji RA, Yusuf-Awesu SA (2022). Maternal and perinatal outcomes of preeclampsia at a tertiary hospital in lagos, Nigeria. Int J Med Health Dev [serial online] 2022 ;27:197-200. Available from: https://www.ijmhdev.com/text.asp?2022/27/2/197/339034 DOI: https://doi.org/10.4103/ijmh.IJMH_46_21
Venkatesh, K. K., Beckham, J., Friedman, A. M., Boggess, K., Jelovsek, E., & Stamilio, D. M. (2021). A prediction model for postpartum readmission for hypertension or preeclampsia. The American Journal of Obstetrics & Gynecology, 224(2), S42–S43. https://doi.org/10.1016/j.ajog.2020.12.058 DOI: https://doi.org/10.1016/j.ajog.2020.12.058
VANDERJAGT, D. J., PATEL, R. J., EL-NAFATY, A. U., MELAH, G. S., CROSSEY, M. J., & GLEW, R. H. (2004). High-density lipoprotein and homocysteine levels correlate inversely in preeclamptic women in northern Nigeria. Acta Obstet Gynecol Scand, 83, 536–542. https://doi.org/10.1111/j.1600-0412.2004.00513.x DOI: https://doi.org/10.1080/j.1600-0412.2004.00513.x
Wang, W., & Sun, D. (2021). The improved AdaBoost algorithms for imbalanced data classification. Information Sciences, 563, 358-374. DOI: https://doi.org/10.1016/j.ins.2021.03.042
Weissgerber TL, Mudd LM (2015): Preeclampsia and diabetes. Curr Diab Rep. 2015, 15:9. 10.1007/s11892-015- 0579-4 DOI: https://doi.org/10.1007/s11892-015-0579-4
Wright, D., Wright, A., & Nicolaides, K. H. (2019). THE COMPETING RISK APPROACH FOR PREDICTION OF PREECLAMPSIA. American Journal of Obstetrics and Gynecology. https://doi.org/10.1016/j.ajog.2019.11.1247 DOI: https://doi.org/10.1016/j.ajog.2019.11.1247
Copyright (c) 2024 FUDMA JOURNAL OF SCIENCES
This work is licensed under a Creative Commons Attribution 4.0 International License.
FUDMA Journal of Sciences