PROXIMATE AND FUEL PROPERTIES OF AFRICAN LOCUST BEAN PULP AND CASSAVA STARCH FLOUR BINDERS FOR FUEL BRIQUETTE PRODUCTION
Abstract
The study investigates the proximate and combustion properties of affordable and locally available briquette binders, namely: African locust bean pulp and cassava starch (flour) using the American Society for Testing and Materials (ASTM) methods. The findings indicate varying levels of moisture content (4.55% to 6.89%), volatile matter (30.06% to 64.21%), ash content (0.93% to 23.36%), and fixed carbon (7.89% to 62.12%). Elemental composition of carbon, hydrogen, and oxygen range from 34.24% to 53.25%, 4.39% to 5.09%, and 32.96% to 33.19%, respectively. The calorific values obtained in the study are 16.85±0.48 MJ/kg for African locust bean pulp and 20.69±0.34 MJ/kg for cassava starch flour. Both binders exhibit properties conducive to producing high-quality briquettes capable of generating sufficient heat for household and small-scale industrial settings.
References
Ajimotokan, H.A., Ehindero, A.O., Ajao, K.S., Adeleke, A.A., Ikubanni, P.P. and Shuaib-Babata, Y. L. (2019). Combustion Characteristics of Fuel Briquettes made from Charcoal Particles and Sawdust Agglomerates, Scientific African (2019), doi: https://doi.org/10.1016/j.sciaf.2019.e00202.
Akande, F.B., Adejumo O.A., Adamade C.A. and Bodunde J. (2010). Processing of Locust Bean Fruits: Challenges and Prospects. African Journal of Agricultural Research. Vol 5(17): 2268-2271. http:// www.academicjournal.org/AJAR.
Akegbejo-samsons, Y., Oyewole, O. B., Olayinka, S. O. and Olaniyan, T. O. (2004). Chemical composition and Binding power of dried pulp wastes produced from the African locust bean (Parkia biglobosa) in low cost fish diets. Ife Journal of Science, 6(1): 30-34.
Alakangas, E. (2016). Biomass and agricultural residues for energy generation. Fuel Flexible Energy Generation. http://dx.doi.org/10.1016/B978-1-78242-378-2.00003-1
Altun, N.E., Hicyilmaz, C. and Kök, M. V. (2001). Effect of different binders on the combustion properties of lignite part I. Effect on thermal properties. J Therm Anal Calorim ;65:787–95.
Arinola, S. O., Oje, O. J and Omowaye-Taiwo, O. A. (2019). Evaluation of Physicochemical Properties and Phytochemical composition of African Locust Bean (Parkia Biglobosa) Pulp, Applied Tropical Agriculture Volume 24, No 1, 64-69.
ASTM D3175-18, (2018). Standard Test Method for Volatile Matter in the Analysis Sample of Coal and Coke. ASTM International, West Conshohocken, PA. https://doi.org/10.1520/D3175-18.
ASTM EI755-01, (2020). Standard Test Method for Determination of ash content of Biomass West Conshohocken, PA 19428-2959. United States.
ASTM. (2006). Standard test method for moisture in the analysis of particulate wood fuels. Conshohoken, PA: ASTM International West.
Ayse, O and Serdar, Y. (2017). Prediction of Calorific Value of Biomass from Proximate Analysis. 3rd International Conference on Energy and Environment Research, ICEER 2016, 7-11 September, 2016, Barcelona, Spain. Energy Procedia 107: 130 – 136.
Blesa, M. J., Miranda, J. L., Izquierdo, M. T. and Moliner, R. (2003). Curing temperature effect on mechanical strength of smokeless fuel briquettes prepared with humates. Fuel; 82:943–7.
Channiwala, S. A. and Parikh, P. P. (2002). A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel: 81:1051-1063.
Chin, O. C. and Siddiqui, K. M. (2000). Characteristics of some biomass briquettes prepared under modest die pressure. Biomass and Energy 18: 223-228.
Chou, C.S., Lin S.H., Peng, C.C. and Lu, W.C. (2009). The optimum conditions for preparing solid fuel briquette of rice straw by a pistonmold process using the Taguchi method. Fuel Process Technol 90: 1041–1046.
Ciubota-Rosie, C., Gavrilescu, M. and Macoveanu, M. (2008). Biomass; - an important renewable source of energy in Romania,” Journal of. Environment Engineering and Management, vol. 7, no. 5, pp. 559–568, 2008.
Dayana, S., Sharuddin, A., Abnisa, F., Mohd, W., and Wan, A., (2016). A Review on Pyrolysis of Plastic Wastes. Energy Convers. Manag. 115, 308–326. https://doi.org/10.1016/j. enconman.2016.02.037.
Deng, L., Zhang, T and Che, D. (2013). Effect of water washing on fuel properties, pyrolysis and combustion characteristics, and ash fusibility of biomass, Fuel Processing Technology 106: 712–720, http://dx.doi.org/10.1016/j.fuproc.2012.10.006.
Elsisi, S. F., Omar, M. N., Samak, A. A., Gomaa. E. M. and Elsaeidy, E. A. (2023). Production the briquettes from mixture of agricultural residues and evaluation its physical, mechanical and combustion properties. Misr J. Ag. Eng., 40 (4): 393 – 418. DOI: 10.21608/ MJae.2023.219214.1107.
Emerhi, E. A. (2011). Physical and combustion properties of briquettes produced from sawdust of three hardwood species and different organic binders. Pelagia Research Library, Advances in Applied Science Research, 2 (6):236-246, ISSN: 0976-8610.
Erol, M., Haykiri-Acma, H and Kucukbayrak, S. (2010). Calorific value estimation of biomass from their proximate analyses data. Renewable Energy: 35:170-173.
Gilbert, P., Ryu, C., Sharif, V. and Switchenbank, J. (2009). Effect of processing parameters on pelletisation of herbaceous crops. Fuel. 2009;88:1491-1497.
Grammelis, P., Margaritis, N. and Karampinis, E. (2016). Solid Fuel Types For Energy Generation: Coal and Fossil Carbon-Derivative Solid Fuels. Fuel Flexible Energy Generation. Pp 29-58.
Ianez-Rodríguez, I., Martín-Lara, M.A, Perez, A. Blazquez, G. and Calero, Monica (2020). Water washing for upgrading fuel properties of greenhouse crop residue from pepper. Renewable Energy 145: 2121-2129, https://doi.org/10.1016/j.renene.2019.07.143.
Jiang, L., Liang, J., Yuan, X., Li, H., Li, C., Xiao, Z., Huang, H., Wang, H. and Zeng, G. (2014). Copelletization of sewage sludge and biomass: the density and hardness of pellet, Bioresource Technology. doi: http://dx.doi.org/10.1016/j.biortech.2014.05.077.
Kenechukwu, U. and Kevin, A. (2013). Evaluation of Binders in the Production of Briquettes from Empty Fruit Bunches of Elais Guinensis. International Journal of Renewable and Sustainable Energy. 2(4): 176-179. doi: 10.11648/j.ijrse.20130204.17.
Kumar, M. and Patel, S. K. (2014). The Characteristics and Power Generation Energetics of Coal, Cattle Dung, Rice Husk, and Their Blends, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 36:7, 700-708, DOI: 10.1080/15567036.2010.545798.
Liu, Z., Hoekmanb, S. K., Balasubramanian, R. and Zhang, F. (2015). Improvement of fuel qualities of solid fuel biochars by washing treatment, Fuel Processing Technology, http://dx.doi.org/10.1016/j.fuproc.2015.01.025.
Maninder, R., Singh, K. and Grover, S. (2012). Using agricultural residues as a Biomass Briquetting: An Alternative source of energy. J. Electr. Electron. Eng; 1, 11–15.
Mckendry, P., 2002. Energy production from biomass (Part 1 ): Overview of biomass, vol. 83, pp. 37–46.
Mitchual, S.J., Frimpong-Mensah, K. and Darkwa, N.A. (2014). Evaluation of Fuel Properties of Six Tropical Hardwood Timber Species for Briquettes. Journal of Sustainable Bioenergy Systems, 4, 1-9. https://doi.org/10.4236/jsbs.2014.41001.
Mohammed, T.I. and Olugbade, T. O (2015). Characterization of briquettes from rice bran and palm kernel shell. Int. J. Mater. Sci. Innovations 3(2):60–67.
Muazu, R. I. and Stegemann, J. A. (2015). Effects of operating variables on durability of fuel briquettes from rice husks and corn cobs. J Fuel Process Technol: 133:137–45.
Muazu, R. I. and Stegemann, J. A. (2017). Biosolids and microalgae as alternative binders for biomass fuel briquetting. J Fuel Process Technol. doi.org/10.1016/j.fuel.2017.01.019.
Namadi, S. Musa, A. O. and Gana, U. M. (2023). Physical and Proximate Analysis of Fuel Briquette made using African Locust Bean (Parkia Biglobosa) Pulp as a Binder. Asian J. Res. Rev. Phys., vol. 7, no. 3, pp. 32-43, DOI: 10.9734/AJR2P/2023/v7i3143.
Ndecky, A., Tavares, P.W., Senghor, A., Kane, M., Ndiath, H. and Youm, I. (2022). Proximate Analysis of Alternatives Cooking Solides Fuels in Sub Saharan by Using Astm Standards. International Journal of Clean Coal and Energy, 11, 1-12. https://doi.org/10.4236/ijcce.2022.111001.
Ngusale, G. K., Luo, Y. and Kiplagat, J. K. (2014). Briquette making in Kenya: Nairobi and peri-urban areas, Renewable and Sustainable Energy Reviews.;40:749-759.
Nhuchhen, D. R. and Abdul Salam, P. (2012). Estimation of higher heating value of biomass from proximate analysis: A new approach. Fuel 99 (2012) 55–63, http://dx.doi.org/10.1016/j.fuel.2012.04.015
Obi, O. F and Okongwu, K. C. (2016). Characterization of fuel briquettesmade from a blend of rice husk and palm oil mill sludge. Biomass Conv. Bioref. DOI 10.1007/s13399-016-0206.
Ohagwu, C. J, Nwakaire, J. N, Amaefule, D. O, Nwaezeh, C. D and Anyanwu, C. N. (2022). Physicomechanical and fuel properties of sawdust briquettes using Abelmoschus esculentus waste as a binder. Agricultural Engineering International: CIGR Journal.;24(2):83-94.
Oke, P. K, Olugbade, T. O. and Olaiya, N. G. (2016). Analysis of the effect of varying palm kernel particle sizes on the calorific value of palm kernel briquette. Br J Appl Sci Technol 14(2):1–5.
Olugbade, T., Ojo, O. and Mohammed, T. (2019). Influence of Binders on Combustion Properties of Biomass Briquettes: A Recent Review, Bio-Energy Research, https://doi.org/10.1007/s12155-019-09973-w
Oyeyinka, S. A., Adeloye, A. A.., Smith, S. A., Adesina, B. O., and Akinwande, F. F. (2019). Physicochemical Properties of Flour and Starch From Two Cassava Varieties, Agrosearch, 19(1): 28-45, https://dx.doi.org/10.4314/agrosh.v19i1.3.
Parikh, J., Channiwala, S. A. and Ghosal, G. K. (2007). A correlation for calculating elemental composition from proximate analysis of biomass materials, Fuel 86: 1710-1719.
S
oares, R.B., Memelli, Martins, M. F. and Gonçalves, R. F. (2019). A conceptual scenario for the use of microalgae biomass for microgeneration in wastewater treatment plants Journal of Environmental Management. https://doi.org/10.1016/j.jenvman.2019.109639.
Sotannde, O. A., Oluyege, O. A. and Abah, G. B. (2010). Physical and Combustion properties of charcoal briquettes from neem wood residues. International Agrophysics, 24: 189-194, DOI: 10.1007/s11676-010-0010-6.
Sugimin, Y., Sitepu, T. and Ambarita, H. (2020). Proximate, ultimate and calorific value analyses of paper industry sludge at different moisture content. IOP Publishing doi:10.1088/1757-899X/851/1/012052.
Zhang, G., Sun, Y., and Xu, Y. (2018). Review of briquette binders and briquetting mechanism. Renewable and Sustainable Energy Reviews, 82, 477–487. doi:10.1016/j.rser.2017.09.072.
Zhao, Y., Chang. H., Ji, D. and Liu Y. (2001). The research progress on the briquetting mechanism of fine coal. Coal Convers; 24:12–4.
Copyright (c) 2024 FUDMA JOURNAL OF SCIENCES
This work is licensed under a Creative Commons Attribution 4.0 International License.
FUDMA Journal of Sciences