DISTRIBUTION OF PLASMODIUM FALCIPARUM CHLOROQUINE RESISTANCE TRANSPORTER (PFCRT) AND PLASMODIUM FALCIPARUM MULTIDRUG RESISTANCE 1(PFMDR-1) GENES IN ILORIN NORTH-CENTRAL NIGERIA

  • Jimoh O. Abdulraheem Olayemi
  • Oluwasogo Olalubi
  • Sunday Awe
Keywords: Plasmodium falciparum, Chloroquine resistance transporter gene, Multidrug resistance gene, Ilorin

Abstract

Globally, malaria is a peculiar health challenge particularly in continent of Africa. The ease of developing resistance to anti-malaria drugs by Plasmodium falciparum is a serious impediment towards programs aim at control and elimination of malaria. Consequently, drug efficacy surveillance is desirable to institute adequate and effective treatment policies. In this study, distribution of these genes in Plasmodium falciparum isolates in Ilorin metropolis were investigated. One hundred and three samples collected randomly from 5 hospitals in Ilorin metropolis. The samples were amplified at codon 76 and 86 for Pfcrt and Pfmdr-1 respectively using PCR / Restricted Fragment Length Polymorphism (RFLP). The most prevalent alleles were drug susceptible alleles in the study area (K76 and N86) with 31% and 40% respectively, while drug resistance alleles (86Y) have 13% and the least prevalence 2% was the mixed alleles K76T.  UITH has the highest number of susceptible alleles followed by CSC 38% and 46% for K76 and N86 respectively. There are significant differences in the distribution of these alleles and the study sites (P< 0.05). The prevalence of resistance alleles in the area is a welcome development that can be employed for possibility of re-introduction of CQ for the treatment of malaria in the study area which will serve as an advantage over expensive ACT due to fact that it is safe cheap and readily affordable.

References

Abdifatah, A. J., & Kesara, N. (2018). Plasmodium falciparum drug Resistance gene status in the Horn of Africa: A systemic review. African Journal of Pharmacy and Pharmacology, 12(25), 361–373. DOI: https://doi.org/10.5897/AJPP2018.4942

Adam, R., Mukhtar, M. M., Abubakar, U. F., Damudi, H. A., Muhammad, A., & Ibrahim, S. S. (2021). Polymorphism analysis of Pfmdr1 and Pfcrt from Plasmodium falciparum isolates in northwestern Nigeria revealed the major markers associated with antimalarial resistance. Diseases (Basel, Switzerland), 9(1), 6. https://doi.org/10.3390/diseases9010006 DOI: https://doi.org/10.3390/diseases9010006

Alade, T.O., Eric, E.U and Arikekpar, I (2019). Assessment of Light Microscopy, Rapid Diagnostic Test and Polymerase Chain Reaction on the Diagnosis of Malaria Infection in Infected Individuals in Southern Nigeria. Int.J.Curr.Microbiol.App.Sci 8(3): 1037-1043 DOI: https://doi.org/10.20546/ijcmas.2019.803.126

Balogun, T S., Sandaba, K U., Waziri A I., Jubrin J., Fehintola A F (2016). Invitro sensitivity of Plasmodium falciparum clinical isolates to 4-aminoquinolines in Northeast Nigeria. Malariaworld Journal. Doi: 10.5281/zenodo.10818088

Chebore, W., Zhou, Z., Westercamp, N., Otieno, K., Shi, Y. P., Sergent, S. B., Rondini, K. A., Svigel, S. S., Guyah, B., Udhayakumar, V., Halsey, E. S., Samuels, A. M., & Kariuki, S. (2020). Assessment of molecular markers of anti-malarial drug resistance among children participating in a therapeutic efficacy study in western Kenya. Malaria Journal, 19(1). https://doi.org/10.1186/s12936-020-03358-7 DOI: https://doi.org/10.1186/s12936-020-03358-7

Dadding F. I. and Hilary T. K. (Ed.). (2019). Impact of malaria on maternal mortality in Nigeria: Vol. 8(2):124-132. Dutse journal of economics and development studies. https://www.researchgate.net/publication/342747234_IMPACT_OF_MALARIA_ON_MATERNAL_MORTALITY_IN_NIGERIA

Dokunmu, T.M., Adjekukor, C.U., Yakubu, O.F., Bello, A.O., Adekoya, J.O., Akinola, O., and et al., (2019). Asymptomatic Malaria infections and Pfmdr-1 mutations in an endemic area of Nigeria. Malaria Journal (18):218 DOI: https://doi.org/10.1186/s12936-019-2833-8

Hassan, J Alemayehu, S G., Dinka, H., Golassa, L (2022). High prevalence of Pfcrt 76T and Pfmdr-1 N86 genotypes in malaria infected patients attending health facilities in East Shewa zone, Oromia Regional State, Ethiopia. Malaria Journal doi:10.1186//s12936-022-04304-5 DOI: https://doi.org/10.1186/s12936-022-04304-5

Lawal, B., Shittu, O. K., Abubakar, A., & Kabiru, A. Y. (2018). Human genetic markers and structural prediction of Plasmodium falciparum multidrug resistance gene (pfmdr1) for ligand binding in pregnant women attending General Hospital Minna. Journal of Environmental and Public Health, 2018, 3984316. https://doi.org/10.1155/2018/398431. DOI: https://doi.org/10.1155/2018/3984316

Lukwa Tafadzwa Akim, Richard Mawoyo, Karen Nelwin Zablon, Aggrey Siya and Olufunke Alaba (2019). Effect of malaria on productivity in a workplace: the case of a banana plantation in Zimbabwe. Malaria Journal (18): 390 DOI: https://doi.org/10.1186/s12936-019-3021-6

Malmberg, M., Ngasala, B., Ferreira, P., Jovel, I (2013). Temporal trend of molecular markers associated with artemether-lumefantrine tolerance/resistance in Bagamoyo district, Tanzania. Malaria Journal (12):103 DOI: https://doi.org/10.1186/1475-2875-12-103

Mang’era, C.M., Mbai, F.N., Omedo, I.A., Mireji, P.O., et al., (2012). Changes in genotypes of Plasmodium falciparum human malaria parasite following withdrawal of chloroquine in Tiwi, Kenya. Acta Trop. 123:202-207 DOI: https://doi.org/10.1016/j.actatropica.2012.05.007

Mangusho, C., Mwebesa, E., Izudi, J., Aleni, M., Dricile, R., Ayiasi, R. M., & Legason, I. D. (2023). High prevalence of malaria in pregnancy among women attending antenatal care at a large referral hospital in northwestern Uganda: A cross-sectional study. PloS One, 18(4), e0283755. https://doi.org/10.1371/journal.pone.0283755 DOI: https://doi.org/10.1371/journal.pone.0283755

Mohamed, P., Phompradit, P., Chaijaroenkul, W and Na-Bangchang, K (2024). Distribution pattern of molecular markers of antimalaria drug resistance in Plasmodium falciparum isolates on the Thai-Myanmar border during the periods of 1993-1998 and 2002-2008. MBC Genomics 25:269 https://doi.org/10.1186/s12864-023-09814-3 DOI: https://doi.org/10.1186/s12864-023-09814-3

Mohammed, R. H., Nock, H. I., Ndams, S. I., George, B. J., & Deeni, Y. (2017). Distribution of Pfmdr1 and Pfcrt chloroquine drug resistance alleles in north-western Nigeria. Malaria World Journal, 8.

Oluwasogo, O A., Ismail, H.O., Pelumi, D.A (2020). Molecular Epidemiology of Plasmodium falciparum Transporter Genes among School Children in Kwara State, Southwestern Nigeria. International Journal of Tropical Disease and Health. 41 (2) : 1-12 DOI: https://doi.org/10.9734/ijtdh/2020/v41i230249

Severe Malaria Observatory (2020).

Sinha Shweta, Bikashi Medhi, Rakesh Sehgal (2014). Challenges of drug-resistant malaria. National Library of Medicine. doi: 10.1051/parasite/2014059 DOI: https://doi.org/10.1051/parasite/2014059

World Health Organization (2023). World malaria report 2023. World Health Organization. Retrieved July 14, 2024 from http://www.who.int/team/global-malaria-programme/reports/world malaria-reports-2023.

World Health Organization (2022). Basic Malaria Microscopy: Part 1 Leaner’s Guide, 2nd ed. Geneva

World Health Organization. (2019). World Health Organization Technical report committee 2019

Published
2024-10-21
How to Cite
AbdulraheemJ. O., OlalubiO., & AweS. (2024). DISTRIBUTION OF PLASMODIUM FALCIPARUM CHLOROQUINE RESISTANCE TRANSPORTER (PFCRT) AND PLASMODIUM FALCIPARUM MULTIDRUG RESISTANCE 1(PFMDR-1) GENES IN ILORIN NORTH-CENTRAL NIGERIA. FUDMA JOURNAL OF SCIENCES, 8(5), 201 - 209. https://doi.org/10.33003/fjs-2024-0805-2661