SIMULATION AND EXPERIMENTAL ANALYSIS OF CRYSTALLITE SIZE AND MACROSTRAIN OF HEMATITE (Fe2O3) NANOPARTICLES USING WILLIAMSON-HALL METHOD

  • Idris Muhammad Chiromawa
  • Ibrahim Garba Shitu
  • Aminu Muhammad
  • Kamil Kayode Katibi
  • Sani Garba Durumin Iya
Keywords: Hematite (Fe2O3), Nanoparticle, Crystallite size, Microstrain, Simulation, Williamson-Hall Model

Abstract

Determining the crystallite size of nanoparticles represents a significant challenge due to the limitations associated with using a single estimation method. This study addresses this challenge by examining the structural properties of synthesized hematite (Fe2O3) nanoparticles through a combination of experimental and simulated X-ray diffraction analyzes (XRD). Using VESTA software, a simulated XRD pattern was created based on precise crystal structure details from a CIF file, accurately confirming the high purity and crystallinity of the synthesized hematite nanoparticles. Various Williamson-Hall models, including the Uniform Deformation Model (UDM), the Uniform Stress Deformation Model (USDM), and the Uniform Stress Energy Density Model (USEDM), were used to estimate crystallite size and microstrain. Comparing the results of both experimental and simulated data revealed slight variations attributed to differences in measurement techniques, sample preparation, and material properties. Furthermore, energy dispersive X-ray (EDX) analysis confirmed the elemental composition of the synthesized nanoparticles, while transmission electron microscopy (TEM) and field emission scanning electron microscopy (FESEM) provided further validation of the particle size. This study provides a comprehensive investigation of the structural properties of hematite nanoparticles (Fe2O3) and highlights the importance of integrating multiple analytical techniques and simulation methods to improve the precision and reliability of crystallite size estimation.

References

Abd El-Sadek, M. S., Wasly, H. S., & Batoo, K. M. (2019). X-ray peak profile analysis and optical properties of CdS nanoparticles synthesized via the hydrothermal method. Applied Physics A: Materials Science and Processing, 125(4). https://doi.org/10.1007/s00339-019-2576-y DOI: https://doi.org/10.1007/s00339-019-2576-y

Abed, A. H., Khodair, Z. T., Al-saadi, T. M., & Al-dhahir, T. A. (2019). Study the evaluation of Williamson – Hall ( W- H ) strain distribution in silver nanoparticles prepared by sol-gel method Study the Evaluation of Williamson – Hall ( W-H ) Strain Distribution in Silver Nanoparticles Prepared by Sol-Gel Method. 020019(July). DOI: https://doi.org/10.1063/1.5116946

Akl, A. A., & Hassanien, A. S. (2014). Microstructure characterization of Al-Mg alloys by X-ray diffraction line profile analysis Alloy 5251 Al Si Fe Cu Mn Mg Cr Zn Al Reminder. 2(11), 1–9.

Al-Tabbakh, A. A., Karatepe, N., Al-Zubaidi, A. B., Benchaabane, A., & Mahmood, N. B. (2019). Crystallite size and lattice strain of lithiated spinel material for rechargeable battery by X-ray diffraction peak-broadening analysis. International Journal of Energy Research, 43(5), 1903–1911. https://doi.org/10.1002/er.4390 DOI: https://doi.org/10.1002/er.4390

Augustin, M. (2016). Estimation of Lattice Stress and Strain in Zinc and Manganese Ferrite Nanoparticles by Williamson – Hall and Size-Strain Plot Methods. 15(4), 1–7. https://doi.org/10.1142/S0219581X16500356 DOI: https://doi.org/10.1142/S0219581X16500356

Bodke, M., Gawai, U., Patil, A., & Dole, B. (2018). Estimation of accurate size, lattice strain using Williamson-Hall models, SSP and TEM of Al doped ZnO nanocrystals. Materiaux et Techniques, 106(6). https://doi.org/10.1051/mattech/2018055 DOI: https://doi.org/10.1051/mattech/2018055

Chandekar, K. V., & Kant, K. M. (2018). Size-strain analysis and elastic properties of CoFe2O4 nanoplatelets by hydrothermal method. Journal of Molecular Structure, 1154, 418–427. https://doi.org/10.1016/j.molstruc.2017.09.104 DOI: https://doi.org/10.1016/j.molstruc.2017.09.104

Devesa, S., Rooney, A. P., Graça, M. P., Cooper, D., & Costa, L. C. (2021a). Materials Science & Engineering B Williamson-hall analysis in estimation of crystallite size and lattice strain in Bi 1 . 34 Fe 0 . 66 Nb 1 . 34 O 6 . 35 prepared by the sol-gel method. Materials Science & Engineering B, 263(September 2020), 114830. https://doi.org/10.1016/j.mseb.2020.114830

Devesa, S., Rooney, A. P., Graça, M. P., Cooper, D., & Costa, L. C. (2021b). Williamson-hall analysis in estimation of crystallite size and lattice strain in Bi1.34Fe0.66Nb1.34O6.35 prepared by the sol-gel method. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 263. https://doi.org/10.1016/j.mseb.2020.114830 DOI: https://doi.org/10.1016/j.mseb.2020.114830

Fang, H., Guo, H., Hu, Y., Ren, Y., Hsu, P. C., & Bai, S. L. (2020). In-situ grown hollow Fe3O4 onto graphene foam nanocomposites with high EMI shielding effectiveness and thermal conductivity. Composites Science and Technology, 188. https://doi.org/10.1016/j.compscitech.2019.107975 DOI: https://doi.org/10.1016/j.compscitech.2019.107975

Garg, P., Rai, R., & Singh, B. K. (2018). Structural characterization of “as-deposited” cesium iodide films studied by X-ray di ff raction and transmission electron microscopy techniques.

Ilyas, S., Abdullah, B., & Tahir, D. (2019). Nano-Structures & Nano-Objects X-ray diffraction analysis of nanocomposite Fe 3 O 4 / activated carbon by Williamson – Hall and size-strain plot methods. Nano-Structures & Nano-Objects, 20, 100396. https://doi.org/10.1016/j.nanoso.2019.100396 DOI: https://doi.org/10.1016/j.nanoso.2019.100396

Irfan, H., K, M. R., & Anand, S. (2018). Microstructural evaluation of CoAl 2 O 4 nanoparticles by Williamson – Hall and size – strain plot methods. Journal of Asian Ceramic Societies, 00(00), 1–9. https://doi.org/10.1080/21870764.2018.1439606 DOI: https://doi.org/10.1080/21870764.2018.1439606

Kong, F., Bai, J., Bi, P., Liu, X., Wang, Z., & Xiong, R. (2019). Size effect enhanced thermoelectric properties of nanoscale Cu 2-x Se. Ceramics International, 45(7), 8866–8872. https://doi.org/10.1016/j.ceramint.2019.01.215 DOI: https://doi.org/10.1016/j.ceramint.2019.01.215

Kumar, R., Youssry, S. M., Abdel-Galeil, M. M., & Matsuda, A. (2020). One-pot synthesis of reduced graphene oxide nanosheets anchored ZnO nanoparticles via microwave approach for electrochemical performance as supercapacitor electrode. Journal of Materials Science: Materials in Electronics, 31(18), 15456–15465. https://doi.org/10.1007/s10854-020-04108-w DOI: https://doi.org/10.1007/s10854-020-04108-w

Liu, P., Huang, Y., & Zhang, X. (2015). Cubic NiFe2O4 particles on graphene-polyaniline and their enhanced microwave absorption properties. Composites Science and Technology, 107, 54–60. https://doi.org/10.1016/j.compscitech.2014.11.021 DOI: https://doi.org/10.1016/j.compscitech.2014.11.021

Maniammal, K., Madhu, G., & Biju, V. (2017). X-ray diffraction line profile analysis of nanostructured nickel oxide: Shape factor and convolution of crystallite size and microstrain contributions. Physica E: Low-Dimensional Systems and Nanostructures, 85, 214–222. https://doi.org/10.1016/j.physe.2016.08.035 DOI: https://doi.org/10.1016/j.physe.2016.08.035

Monshi, A., Foroughi, M. R., & Monshi, M. R. (2012). Modified Scherrer Equation to Estimate More Accurately Nano-Crystallite Size Using XRD. World Journal of Nano Science and Engineering, 02(03), 154–160. https://doi.org/10.4236/wjnse.2012.23020 DOI: https://doi.org/10.4236/wjnse.2012.23020

Mote, V. D., Purushotham, Y., & Dole, B. N. (2012). Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. 2–9. DOI: https://doi.org/10.1186/2251-7235-6-6

Nath, D., Singh, F., & Das, R. (2020). X-ray diffraction analysis by Williamson-Hall , Halder-Wagner and size-strain plot methods of CdSe nanoparticles- a comparative study. Materials Chemistry and Physics, 239(April 2019), 122021. https://doi.org/10.1016/j.matchemphys.2019.122021 DOI: https://doi.org/10.1016/j.matchemphys.2019.122021

Pawar, S. P., Marathe, D. A., Pattabhi, K., & Bose, S. (2015). Electromagnetic interference shielding through MWNT grafted Fe3O4 nanoparticles in PC/SAN blends. Journal of Materials Chemistry A, 3(2), 656–669. https://doi.org/10.1039/c4ta04559a DOI: https://doi.org/10.1039/C4TA04559A

Prabhu, Y. T., & Rao, K. V. (2014). X-Ray Analysis by Williamson-Hall and Size-Strain Plot Methods of ZnO Nanoparticles with Fuel Variation. March, 21–28. DOI: https://doi.org/10.4236/wjnse.2014.41004

Prasad, J., Singh, A. K., Shah, J., Kotnala, R. K., & Singh, K. (2018). Synthesis of MoS2-reduced graphene oxide/Fe3O4 nanocomposite for enhanced electromagnetic interference shielding effectiveness. Materials Research Express, 5(5). https://doi.org/10.1088/2053-1591/aac0c2 DOI: https://doi.org/10.1088/2053-1591/aac0c2

Rajesh Kumar, B., & Hymavathi, B. (2017). X-ray peak profile analysis of solid-state sintered alumina doped zinc oxide ceramics by Williamson–Hall and size-strain plot methods. Journal of Asian Ceramic Societies, 5(2), 94–103. https://doi.org/10.1016/j.jascer.2017.02.001 DOI: https://doi.org/10.1016/j.jascer.2017.02.001

Science-poland, M. (2020). X-ray diffraction study of the elastic properties of jagged spherical CdS nanocrystals. 38(2), 271–278. https://doi.org/10.2478/msp-2020-0032 DOI: https://doi.org/10.2478/msp-2020-0032

Shitu, I. G., Liew, J. Y. C., Talib, Z. A., Baqiah, H., Awang Kechik, M. M., Ahmad Kamarudin, M., Osman, N. H., Low, Y. J., & Lakin, I. I. (2021). Influence of Irradiation Time on the Structural and Optical Characteristics of CuSe Nanoparticles Synthesized via Microwave-Assisted Technique. ACS Omega, 6(16), 10698–10708. https://doi.org/10.1021/acsomega.1c00148 DOI: https://doi.org/10.1021/acsomega.1c00148

Sivakami, R., Dhanuskodi, S., & Karvembu, R. (2016). Spectrochimica Acta Part A : Molecular and Biomolecular Spectroscopy Estimation of lattice strain in nanocrystalline RuO 2 by Williamson – Hall and size – strain plot methods. 152, 43–50. https://doi.org/10.1016/j.saa.2015.07.008 DOI: https://doi.org/10.1016/j.saa.2015.07.008

Thandavan, T. M. K., Gani, S. M. A., Wong, C. S., & Nor, R. M. (2015). Evaluation of Williamson–Hall Strain and Stress Distribution in ZnO Nanowires Prepared Using Aliphatic Alcohol. Journal of Nondestructive Evaluation, 34(2), 1–9. https://doi.org/10.1007/s10921-015-0286-8 DOI: https://doi.org/10.1007/s10921-015-0286-8

Yao, W. lin, Xiong, G., Yang, Y., Huang, H. qing, & Zhou, Y. fen. (2017). Effect of silica fume and colloidal graphite additions on the EMI shielding effectiveness of nickel fiber cement based composites. Construction and Building Materials, 150, 825–832. https://doi.org/10.1016/j.conbuildmat.2017.06.019 DOI: https://doi.org/10.1016/j.conbuildmat.2017.06.019

Published
2024-06-30
How to Cite
ChiromawaI. M., ShituI. G., MuhammadA., KatibiK. K., & Durumin IyaS. G. (2024). SIMULATION AND EXPERIMENTAL ANALYSIS OF CRYSTALLITE SIZE AND MACROSTRAIN OF HEMATITE (Fe2O3) NANOPARTICLES USING WILLIAMSON-HALL METHOD. FUDMA JOURNAL OF SCIENCES, 8(3), 572 - 580. https://doi.org/10.33003/fjs-2024-0803-2655