DESIGN AND SIMULATION OF A HIGH-GAIN DUAL-BAND MICROSTRIP PATCH ANTENNA ARRAY FOR 26/28 GHz 5G APPLICATIONS

  • Muhammad A. Yusuf Abubakar Tafawa Balewa University, Bauchi
  • Mutari Hajara Ali Bayero University, Kano, Nigeria
Keywords: 5G, Antenna slots, Antenna array, Microstrip patch, Tapered feed line

Abstract

This paper presents a high-gain dual-band microstrip patch antenna array design and simulation for 26/28 GHz 5G applications. The 26 and 28 GHz bands are particularly notable among the existing bands for millimeter-wave applications due to their wide bandwidth and lower absorption rates. The antenna is developed in the CST simulation environment on a Rogers RT5880 substrate with a thickness of 0.508 mm, a relative dielectric permittivity of 2.2, and a loss tangent of 0.0009. The Rogers RT substrate is chosen for its low dielectric loss, controlled dielectric constant, environmental stability, ease of fabrication, and high reliability, making it ideal for high-frequency and high-performance applications. The transmission line model method is used to calculate the antenna dimensions designed to resonate at 26/28 GHz. To achieve high gain and wide bandwidth, arraying and slotting techniques are applied to rectangular patch antennas, as these methods significantly enhance gain, bandwidth, directivity, and radiation pattern control, making them suitable for advanced communication applications. The proposed 1×2 patch antenna array, with dimensions of 33.4 × 21.6 × 0.508 mm³, is designed using a tapered feedline. The antenna array resonates at 26.27 GHz and 28.0 GHz, achieving return losses of -16.55 dB and -31.78 dB, bandwidths of 0.58 GHz and 1.54 GHz, VSWR values of 1.35 and 1.05, gains of 9.12 dB and 12.43 dB, and directivities of 9.77 dBi and 13.05 dBi, respectively. The antenna exhibits higher gain and directivity compared to existing array designs in the literature. This cost-effective and compact antenna array is...

References

Abdelaziz, A., & Hamad, E. K. I. (2019). Design of a Compact High Gain Microstrip Patch Antenna for Tri-Band 5G Wireless Communication. Frequenz, 73(12), 4552. https://doi.org/10.1515/freq-2018-0058 DOI: https://doi.org/10.1515/freq-2018-0058

Bakry, M., Mashade, E. L., & Hegazy, E. A. (2018). Design and Analysis of 28GHz Rectangular Microstrip Patch Array Antenna. WSEAS TRANSACTIONS on COMMUNICATIONS, 17, 19. https://doi.org/E-ISSN: 2224-2864

Balanis, C. A. (2016). Antenna Theory: Analysis and Design (4th ed.). John Wiley & Sons, Inc., Hoboken, New Jersey, Canada.

Banday, Y., Rather, G. M., & Begh, G. R. (2019). Effect of atmospheric absorption on millimetre wave frequencies for 5G cellular networks. The Institution of Engineering and Technology, 13(3), 265270. https://doi.org/10.1049/iet-com.2018.5044 DOI: https://doi.org/10.1049/iet-com.2018.5044

Deepika, J., Mathivanan, M., Muruganandham, A., & Vivek, R. (2017). Parametrical variation and its effects on characteristics of microstrip rectangular patch antenna. Proceedings of the 2nd IEEE International Conference on Electrical, Computer and Communication Technologies, ICECCT, November. https://doi.org/10.1109/ICECCT.2017.8117913 DOI: https://doi.org/10.1109/ICECCT.2017.8117913

Didi, S., Halkhams, I., Es-saqy, A., Fattah, M., Balboul, Y., & Bekkali, M. El. (2023). New microstrip patch antenna array design at 28 GHz millimeter-wave for fifth-generation application. International Journal of Electrical and Computer Engineering (IJECE), 13(4), 41844193. https://doi.org/10.11591/ijece.v13i4.pp4184-4193 DOI: https://doi.org/10.11591/ijece.v13i4.pp4184-4193

Gaid, A. G. S. A., Ali, M. A. M., Saif, A., & Mohammed, W. A. A. (2024). Design and analysis of a low profile, high gain rectangular microstrip patch antenna for 28 GHz applications. Cogent Engineering, 11(1), 115. https://doi.org/10.1080/23311916.2024.2322827 DOI: https://doi.org/10.1080/23311916.2024.2322827

Hakim, M. L., Uddin, M. J., & Hoque, M. J. (2020). 28/38 GHz Dual-Band Microstrip Patch Antenna with DGS and Stub-Slot Configurations and Its 2*2 MIMO Antenna Design for 5G Wireless Communication. 2020 IEEE Region 10 Symposium, TENSYMP 2020, June, 5659. https://doi.org/10.1109/TENSYMP50017.2020.9230601 DOI: https://doi.org/10.1109/TENSYMP50017.2020.9230601

Hong, W., Jiang, Z. H., Yu, C., Hou, D., Wang, H., Guo, C., Hu, Y., Kuai, L., Yu, Y., Jiang, Z., Chen, Z., Chen, J., Yu, Z., Zhai, J., Zhang, N., Tian, L., Wu, F., Yang, G., Hao, Z.-C., &, & Zhou, J. Y. (2021). The Role of Millimeter-Wave Technologies in 5G / 6G Wireless Communications. IEEE Journal of Microwaves, 1(1), 101122. https://doi.org/10.1109/JMW.2020.3035541 DOI: https://doi.org/10.1109/JMW.2020.3035541

Hussain, M., Ali, E. M., Muhammad, S., Jarchavi, R., Zaidi, A., Najam, A. I., Alotaibi, A. A., Althobaiti, A., & Ghoneim, S. S. M. (2022). Design and Characterization of Compact Broadband Antenna and Its MIMO Configuration for 28 GHz 5G Applications. Electronics, 114. https://doi.org/https://doi.org/10.3390/electronics11040523 DOI: https://doi.org/10.3390/electronics11040523

Kraus, J. D., M. J. R. (1997). Antennas-for-All-Applications (Sixth). Tata McGraw-Hill Publishing Companies, inc.New York.

Kumar, A., & Ansari, A. Q. (2021). A Review on Different Techniques of Mutual Coupling Reduction Between Elements of Any MIMO Antenna . Part 1: DGSs and Parasitic Structures. 125. https://doi.org/10.1029/2020RS007122 DOI: https://doi.org/10.1029/2020RS007122

Lima De Paula, I., Lemey, S., Bosman, D., Brande, Q. Van Den, Caytan, O., Lambrecht, J., Cauwe, M., Torfs, G., & Rogier, H. (2021). Cost-Effective High-Performance Air-Filled SIW Antenna Array for the Global 5G 26 GHz and 28 GHz Bands. IEEE Antennas and Wireless Propagation Letters, 20(2), 194198. https://doi.org/10.1109/LAWP.2020.3044114 DOI: https://doi.org/10.1109/LAWP.2020.3044114

Marzouk, Shaalan, and A. M. (2020). A Two-Element Microstrip Antenna 28/38 GHz For 5G Mobile Applications. Delta University Scientific Journal, 3(1), 18. https://doi.org/10.35360/njes.34 DOI: https://doi.org/10.21608/dusj.2020.205473

Mohammed, A. S. B., Kamal, S., Bin Ain, M. F., Ahmad, Z. A., & Zahar, Z., & Hussin, R. (2020). Improving the Gain Performance of 2 2 U-Slot Air Substrate Patch Antenna Array Operated at 28 GHz Wideband Resonance for 5G Application Improving the Gain Performance of 2 2 U-Slot Air Substrate Patch Antenna Array Operated at 28 GHz Wideband Resonanc. International Conference on Technology, Engineering, and Sciences (ICTES), 18. https://doi.org/10.1088/1757-899X/917/1/012083 DOI: https://doi.org/10.1088/1757-899X/917/1/012083

Mohammed, A. S. B., Kamal, S., Fadzil, M., Ain, B., Hussin, R., Najmi, F., Azmin, S., Suandi, S., Arifin, Z., Ullah, U., Faiz, M., & Mohamed, B. (2021). Mathematical model on the effects of conductor thickness on the center frequency at 28 GHz for the performance of microstrip patch antenna using air substrate for 5G application. Alexandria Engineering Journal, 60(6), 52655273. https://doi.org/10.1016/j.aej.2021.04.050 DOI: https://doi.org/10.1016/j.aej.2021.04.050

Muhammad, N. I. & Zaharadden, M. (2020). Directive High Gain Microstrip Patch Array Antenna For 5G Application. FUDMA Journal of Sciences (FJS), 4(1), 438445.

Nahas, M. (2022). Design of a high-gain dual-band LI-slotted microstrip patch antenna for 5G mobile communication systems. Journal of Radiation Research and Applied Sciences, 15(4), 100483. https://doi.org/10.1016/j.jrras.2022.100483 DOI: https://doi.org/10.1016/j.jrras.2022.100483

Rahayu, Y., & Hidayat, M. I. (2018). Design of 28/38 GHz Dual-Band Triangular-Shaped Slot Microstrip Antenna Array for 5G Applications. 2nd International Conference on Telematics and Future Generation Networks, TAFGEN, 9397. https://doi.org/10.1109/TAFGEN.2018.8580487 DOI: https://doi.org/10.1109/TAFGEN.2018.8580487

S. Didi, I. Halkhams, M. Fattah, Y. Balboul, S. Mazer, M. E. B., & al, R. (2021). Study and Design of Printed Rectangular Microstrip Antenna Arrays at an Operating Frequency of 27.5 GHz for 5G Applications. Journal of Nano and Electronic Physics, 13(6), 15. https://doi.org/10.21272/jnep.13(6).06035 DOI: https://doi.org/10.21272/jnep.13(6).06035

Wang, X., Kong, L., & Kong, F. (2018). Millimeter Wave Communication: A Comprehensive Survey. IEEE, c, 141. https://doi.org/10.1109/COMST.2018.2844322 DOI: https://doi.org/10.1109/COMST.2018.2844322

Published
2025-03-31
How to Cite
Yusuf, M. A., & Ali, M. H. (2025). DESIGN AND SIMULATION OF A HIGH-GAIN DUAL-BAND MICROSTRIP PATCH ANTENNA ARRAY FOR 26/28 GHz 5G APPLICATIONS. FUDMA JOURNAL OF SCIENCES, 9(3), 1 - 6. https://doi.org/10.33003/fjs-2025-0903-2653