A SURVEY OF MACHINE LEARNING MODELS FOR TRAFFIC MOVEMENT PREDICTION

  • Eyotor I. Ihama Edo State Polytechnic
  • V. A. Amenaghawon
Keywords: Gridlock, Vehicular movement, Peak period, Prediction

Abstract

In most developed cities globally, traffic congestion has become a major challenge to commuters and road users. In most of the urbanized nations, there are traffic gridlock at certain periods of the day (peak periods). Road users spend alot of time at these gridlocks, wasting a lot of working hours. This gridlock has also resulted to air pollution and accident. Many researchers have develoed different vehicular movement prediction models for better traffic prediction. In this paper, we surveyed different traffic prediction model for congestion management.

References

Liu, W. and Wang, Z. (2010). Dynamic router real-time travel time prediction based on a road network. In: International Symposium on Information and Automation, Springer, Berlin, Heidelberg. pp. 723-729. DOI: https://doi.org/10.1007/978-3-642-19853-3_107

Liu, Y., Wang, Y., Yang, X. and Zhang, L. (2017). Short-term travel time prediction by deep learning: A comparison of different LSTM-DNN models. In: IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), IEEE. pp. 1-8 DOI: https://doi.org/10.1109/ITSC.2017.8317886

Liu, D., Hui, S., Li, L., Liu, Z. and Zhang, Z. (2020). A method for short-term traffic flow forecasting based on GCN-LSTM. In: Proceedings - 2020 International Conference Computer Vision, Image Deep Learning CVIDL no. Cvidl, pp. 364–368 https://doi.org/10.1109/CVI DL51233.2020.00-70 DOI: https://doi.org/10.1109/CVIDL51233.2020.00-70

Araujo, M., Barros, J. and Rossetti, R. J. (2015). Short-term real-time traffic prediction methods: A survey. In: 2015 International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS), pp. 132-139. DOI: https://doi.org/10.1109/MTITS.2015.7223248

Meneguette, R. I., Geraldo-Filho, P. R., Bittencourt, L. F., Ueyama, J., Krishnamachari, B. and Villas, L. A. (2015). Enhancing intelligence in inter-vehicle communications to detect and reduce congestion in urban centers. In: 2015 IEEE Symposium on Computers and Communication (ISCC), IEEE. pp. 1-6. DOI: https://doi.org/10.1109/ISCC.2015.8897528

De Souza, A. M., Yokoyama, R. S., Maia, G., Loureiro, A., and Villas, L. (2016). Real-time path planning to prevent traffic jam through an intelligent transportation system. In: 2016 IEEE Symposium on Computers and Communication (ISCC), IEEE. pp. 726-731. DOI: https://doi.org/10.1109/ISCC.2016.7543822

Hong, W. C. (2011). Traffic flow forecasting by seasonal SVR with chaotic simulated annealing algorithm. Neurocomputing, vol. 74(12-13), pp. 2096-2107. DOI: https://doi.org/10.1016/j.neucom.2010.12.032

Ke, R., Li, Z., Kim, S., Ash, J., Cui, Z. and Wang, Y. (2017). Real-Time Bidirectional Traffic Flow Parameter Estimation from Aerial Videos. IEEE Transactions on Intelligent Transportation Systems, vol. 18(4), pp. 890–901. DOI: https://doi.org/10.1109/TITS.2016.2595526

Rajesh, K. and Vishu, G. (2017). Intelligent Traffic Light Control for Congestion Management for Smart City Development, IEEE Region 10 Symposium (TENSYMP).

Chung, J. and Sohn, K. (2018). Image-Based Learning to Measure Traffic Density Using a Deep Convolutional Neural Network. IEEE Transactions on Intelligent Transportation Systems, vol. 19(5), pp.1670–1675.

Zhang, S., Wu, G., Costeira, J. P. and Moura, J. M. (2017). Fcn-rlstm: Deep spatio-temporal neural networks for vehicle counting in city cameras. In: Proceedings of the IEEE international conference on computer vision, pp. 3667-3676. DOI: https://doi.org/10.1109/ICCV.2017.396

Zhang, Y., Yang, Y., Zhou, W., Wang, H. and Ouyang, X. (2021). Multi-city traffic flow forecasting via multi-task learning. Appl. Intell. Vol. 51, pp. 1–19. https://doi.org/10.1007/s10489-020-020 74-8. DOI: https://doi.org/10.1007/s10489-020-02074-8

Xia, D. (2020). A distributed WND-LSTM model on Map Reduce for short-term traffic flow prediction. Neural Comput. Appl. Vol. 33(7), pp. 2393–2410. https://doi.org/10.1007/s00521- 020-05076-2 DOI: https://doi.org/10.1007/s00521-020-05076-2

Tu, Y., Lin, S., Qiao, J. and Liu, B. (2021). Deep traffic congestion prediction model based on road segment grouping. Appl. Intell. Vol. 51, pp. 1–23. https://doi.org/10.1007/s10489-020-021 52-x DOI: https://doi.org/10.1007/s10489-020-02152-x

Soua, R., Koesdwiady, A. and Karray, F. (2016). Big-data-generated traffic flow prediction using deep learning and dempster-shafer theory. In: 2016 International joint conference on neural networks (IJCNN), IEEE. pp. 3195-3202. DOI: https://doi.org/10.1109/IJCNN.2016.7727607

Chung, J. and Sohn, K. (2018). Image-Based Learning to Measure Traffic Density Using a Deep Convolutional Neural Network. IEEE Transactions on Intelligent Transportation Systems, vol. 19(5), pp.1670–1675. DOI: https://doi.org/10.1109/TITS.2017.2732029

Zonoozi, A., Kim, J. J., Li, X. L. and Cong, G. (2018). Periodic-CRN: A Convolutional Recurrent Model for Crowd Density Prediction with Recurring Periodic Patterns. In: IJCAI, pp. 3732-3738. DOI: https://doi.org/10.24963/ijcai.2018/519

Perez-Murueta, P., Gómez-Espinosa, A., Cardenas, C. and Gonzalez-Mendoza, M. (2019) Deep Learning System for Vehicular Re-Routing and Congestion Avoidance. Applied Sciences, vol. 9(13), pp. 2717. DOI: https://doi.org/10.3390/app9132717

Gupta, B., Awasthi, S., Gupta, R., Ram, L., Kumar, P., Prasad, B. R., and Agarwal, S. (2018). Taxi travel time prediction using ensemble-based random forest and gradient boosting model. In: Advances in Big Data and Cloud Computing, Springer, Singapore. pp. 63-78. DOI: https://doi.org/10.1007/978-981-10-7200-0_6

Hamner, B. (2010). Predicting travel times with context-dependent random forests by modelling local and aggregate traffic flow. In: 2010 IEEE International Conference on Data Mining Workshops, IEEE. pp. 1357-1359. DOI: https://doi.org/10.1109/ICDMW.2010.128

Jenelius, E. and Koutsopoulos, H. N. (2017). Urban network travel time prediction based on a probabilistic principal component analysis model of probe data. IEEE Transactions on Intelligent Transportation Systems, vol. 19(2), pp. 436-445. DOI: https://doi.org/10.1109/TITS.2017.2703652

Tian, X. (2018). Research on Travel Time Prediction under Internet of Vehicles. In: 2018 International Conference on Intelligent Transportation, Big Data & Smart City (ICITBS), IEEE. pp. 38-40. DOI: https://doi.org/10.1109/ICITBS.2018.00017

Philip, A. M., Ramadurai, G. and Vanajakshi, L. (2018). Urban Arterial Travel Time Prediction Using Support Vector Regression. Transportation in Developing Economies, vol. 4(1), pp. 7. DOI: https://doi.org/10.1007/s40890-018-0060-6

Elleuch, W., Wali, A. and Alimi, A. M. (2016). Intelligent Traffic Congestion Prediction System Based on ANN and Decision Tree Using Big GPS Traces. In: International conference on intelligent systems design and applications, Springer, Cham. pp. 478-487. DOI: https://doi.org/10.1007/978-3-319-53480-0_47

More, R., Mugal, A., Rajgure, S., Adhao, R.B. and Pachghare, V.K. (2016). Road traffic predictionand congestion control using Artificial Neural Networks. In: 2016 International Conference on Computing, Analytics and Security Trends (CAST), IEEE. pp. 52-57. DOI: https://doi.org/10.1109/CAST.2016.7914939

Xu, D. and Shi, Y. (2017). A combined model of random forest and multilayer perceptron to forecast expressway traffic flow. In: 2017 7th IEEE International Conference on Electronics Information and Emergency Communication (ICEIEC), IEEE. pp. 448-451. DOI: https://doi.org/10.1109/ICEIEC.2017.8076602

Kong, F., Li, J. and Lv, Z. (2018). Construction of intelligent traffic information recommendation system based on long short-term memory. J. Comput. Sci. vol. 26, pp. 78–86. https://doi.org/10.1016/ j.jocs.2018.03.010 DOI: https://doi.org/10.1016/j.jocs.2018.03.010

Chou, C. H., Huang, Y., Huang, C. Y. and Tseng, V.S. Yang, Q., Zhou, Z.-H., Gong, Z., Zhang, M.-L., Huang, S.-J. (2019). Long-term traffic time prediction using deep learning with integration of weather effect. (eds.) PAKDD LNCS (LNAI), vol. 11440, pp. 123–135. Springer, Cham. https://doi.org/10.1007/978-3-030-16145-3_10 DOI: https://doi.org/10.1007/978-3-030-16145-3_10

Wang, J., Cao, Y., Du, Y. and Li, L. (2019). DST: a deep urban traffic flow prediction framework based on spatial-temporal features. KSEM. LNCS (LNAI), vol. 11775, pp. 417–427. Springer, Cham. https://doi.org/10. 1007/978-3-030-29551-6_37 DOI: https://doi.org/10.1007/978-3-030-29551-6_37

Jin, W., Lin, Y., Wu, Z. and Wan, H. (2018). Spatio-temporal recurrent convolutional networks for citywide short-term crowd flows prediction. In: ACM International Conference Proceeding Series, pp. 28–35. https://doi.org/10.1145/3193077.3193082 DOI: https://doi.org/10.1145/3193077.3193082

Zhao, Z., Chen, W., Wu, X., Chen, P. C. and Liu, J. (2017). LSTM network: a deep learning approach for short-term traffic forecast. IET Intelligent Transport Systems, vol. 11(2), pp. 68-75. DOI: https://doi.org/10.1049/iet-its.2016.0208

Shao, H., and Soong, B. H. (2016). Traffic flow prediction with long short-term memory networks (LSTMs). In: 2016 IEEE Region 10 Conference (TENCON), IEEE. pp. 2986-2989. DOI: https://doi.org/10.1109/TENCON.2016.7848593

Kang, D., Lv, Y. and Chen, Y.Y. (2017). Short-term traffic flow prediction with LSTM recurrent neural network. In: 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), IEEE. pp. 1-6. DOI: https://doi.org/10.1109/ITSC.2017.8317872

Published
2024-08-10
How to Cite
IhamaE. I., & AmenaghawonV. A. (2024). A SURVEY OF MACHINE LEARNING MODELS FOR TRAFFIC MOVEMENT PREDICTION. FUDMA JOURNAL OF SCIENCES, 8(4), 172 - 178. https://doi.org/10.33003/fjs-2024-0804-2650