BIOLOGICAL FITNESS COSTS OF GLUTATHIONE-S-TRANSFERASE (GST)-MEDIATED PERMETHRIN RESISTANCE IN ANOPHELES GAMBIAE GILES (DIPTERA: CULICIDAE)

  • Oluwaseun Adegbola Adesoye Molecular Entomology and Vector Control Unit, Nigerian Institute of Medical Research, Yaba, Lagos, Nigeria
  • Adedapo O. Adeogun
  • Tolulope A. Oyeniyi
  • Olalekan E. Olagundoye
  • Romoke T. Izekor
  • Oluwakemi O. Adetunji
  • Ayodele S. Babalola
  • Israel O. Akinsete
  • Kamoru A. Adeniyi
  • 5Callistus A. Akinleye
  • Adewale D. Adediran
  • Chidima Isaac
  • Samson T. Awolola
  • Adeolu T. Ande
Keywords: Selection pressure, Vector control, Cost fitness, Mortality, Sub-lethal concentration, CDC bottle

Abstract

Glutathione-S-transferase (GST)-mediated resistance development has been well documented in Anopheles gambiae Giles (Diptera: Culicidae). However, its biological consequences in this malaria vector are merely addressed. The present study aims to determine the implications of such a response in An. gambiae Kisumu population following exposure to a concentration of permethrin selection across multiple generations. Generations of adult mosquitoes exposed to 0.2 µg/bottle of permethrin were compared with unexposed controls to analyze resistance development, life events, and GST levels. Data obtained were analyzed using SPSS. Analysis of Variance was used to determine statistical differences at 95%. Resistance development and inference on filial generation where the population becomes resistant to recommended concentration (full-blown resistance) were determined using the R-Program. The fecundity of the selected population declined progressively over generations. With an increase in the activity of GST enzyme as stated in the previous study, the resistance of the Kisumu population progressed significantly (P = 0.041) against 5.0 µg/bottle and 10.0 µg/bottle from f1 to f4 generations in response to generational selection by 0.2 µg/bottle. This population would infer full-blown resistance at the 154th generation as a result of generational exposure to 0.2 µg/bottle. Mosquito resistance development is detrimental to malaria vectors as it reduces oviposition capability, increases the longevity of immature stages with filial generations, and delays full-blown resistance of susceptible vectors.

References

Adeogun, A., Babalola, A.S., Okoko, O.O., Oyeniyi, T., Omotayo, A., Izekor, R.T., Adetunji, O., Olakiigbe, A., Olagundoye, O., Adeleke, M., Ojianwuna, C., Adamu, D., Daskum, A., Musa, J., Sambo, O., Oduola, A., Inyama, P., Samdi, L., Obembe, A., Dogara, M., Poloma, K., Mohammed, S., Samuel, R., Amajoh, C., Musa, A., Bala, M., Omo-Eboh, M.E., Sinka, M., Idowu OA, Ande A, Olayemi I, Yayo A, Uhomoibhi P, Awolola S. and Salako B. (2023). Spatial distribution and ecological niche modeling of geographical spread of Anopheles gambiae complex in Nigeria using real time data. Sci Rep., 13, 13679. https://doi.org/10.1038/s41598-023-40929-5

Adesoye, A.O., Adeogun, A., Olagundoye, O.E., Oyeniyi, T.O., Izekor, R.T., Adetunji, O.O., Babalola, A.S., Adediran, D.A., Isaac, C., Adeleke, T., Awolola, T.S. and Ande, A.T. (2023). Metabolic resistance mechanisms evident in generations of Anopheles gambiae (kisumu) adults exposed to sub-lethal concentrations of permethrin insecticide. pajols 7(3), 750-758

Adeniyi, Kamoru A., Abubakar, Abubakar Sodiq, Adesoye, Oluwaseun Adegbola, Joshua Babalola Balogun, Akinsete, Israel, and Adeogun Adedapo O. (2024). Knowledge Evaluation of Mosquito Control Practices Within the Central Region of Jigawa State, North-West Nigeria. FJS., 8(3), 73

Adi, K. and Murad, G. (2012). Fitness costs associated with insecticide Resistance. Pest Manag. Sci., 68, 1431 –1437

Awolola, T.S., Adeogun, A., Olakiigbe, A.K., Oyeniyi, T., Olukosi, Y.A., Okoh, H., Arowolo, T., Akila, J., Oduola, A. and Amajoh, C.N. (2018). Pyrethroids resistance intensity and resistance mechanisms in Anopheles gambiae from malaria vector surveillance sites in Nigeria. PLoS ONE, 13(12), e0205230. doi: 10.1371/journal.pone.0205230.

Brogdom, W.G. and Chan, A. (2010). Guidelines for evaluating insecticide resistance in vectors using cdc bottle bioassay/methods in Anopheles research CDC Atlanta USA: 2010 CDC technical Report. P. 28.

Carrasco, D., Thierry, L., Nicolas, M., Pennetier,, C., Fabrice, K. and Cohue, A. (2019). Behavioural adaptations of mosquito vectors to insecticide control. Science Direct, 34, 48-53

Centre for Diseases Control and Prevention (CDC) (2015). CDC bottle bioassay: dissection of parasitic diseases and malaria. Global Health. http://www.cdc.gov/parasites/education_training/lab/bottlebioassay [Accessed 10/2/2024]

Chukwuekezie, O., Nwosu, E., Nwangwu, U., Dogunro, F., Onwude, C., Agashi, N., Ezihe, E., Anioke, C., Anokwu, S., Eloy, E., Attah, P., Orizu, F., Ewo, S., Okoronkwo, A., Anumba, J., Ikeakor, I., Haruna, S. and Gnanguenon, V. (2020). Resistance status of Anopheles gambiae (s.l.) to four commonly used insecticides for malaria vector control in South-East Nigeria. Parasites Vectors, 13, 152. https://doi.org/10.1186/s13071-020-04027-z

de França, S., Breda, M., Douglas, R.S., Alice, M.N., Araujo, A. and Guedes, C.A. (2017). The sublethal effects of insecticides in insects. biological control of pest and vector insects. InTechOpen ISBN 978-953-51-3036-9, 360. DOI:10.57-72/66461

Dufera, M., Dabsu, R. and Tiruneh, G. (2020). Assessment of malaria as a public health problem in and around Arjo Didhessa sugar cane plantation area, Western Ethiopia. BMC public health, 20, 1-10.

Feng, Y.T., Wu, Q.J., Xu, B.Y., Wang, S.L., Chang, X and Xie, W. (2009). Fitness costs and morphological change of laboratory-selected thiamethoxam resistance in the B type Bemisia tabaci (Hemiptera: Aleyrodidae). J Appl Entomol., 133, 466–472

Gassmann, A.J., Carriere, Y. and Tabashnik, B.E. (2009). Fitness costs of insect resistance to Bacillus thuringiensis. Annu Rev Entomol., 54, 147 –163

Gunasekaran, K.S., Muthukumaravel, S.S., Sahu, T. and Vijayakumar, P. (2015). Glutathione S.Transferase activity in indian vectors of malaria: a defense mechanism against DDT. J of Medical Entomology, 48(3), 561–569

Koffi, A.A., Camara, S., Ahoua, A., Alou, L.P., Oumbouke, W., Wolie, R.Z., Tia, I.Z., Sternberg, E.D., Yapo, F.H., Koffi, F.M., Assi, S.B., Cook, J., Thomas, M.D. and N’Guessan, R. (2023). Anopheles vector distribution and malaria transmission dynamics in Gbêkê region, central Côte d’Ivoire. Malar J., 22, 192. https://doi.org/10.1186/s12936-023-04623-1

Kpanou, C.D., Sagbohan, H.W., Dagnon, F., Padonou, G.G., Ossè, R., Salako, A.S., Sidick, A., Sewadé, W., Sominahouin, A., Condo, P., Ahmed, S.H., Impoinvi, D. and Akogbéto M. (2021). Characterization of resistance profile (intensity and mechanisms) of Anopheles gambiae in three communes of northern Benin, West Africa. Malar J., 20, 32. https://doi.org/10.1186/s12936-021-03856-2

Liu, N. (2015). Insecticides resistance in mosquitoes: impact, mechanisms, and research directions. Annu. Rev. Entomol., 60, 537-559.

Nakatani, K., Ishikawa, H., Aono, S. and Mizutani Y. (2014). Identification of essential histidine residues involved in heme binding and hemozoin formation in heme detoxification protein from Plasmodium falciparum. National Academic Science, 4, 6137.

Puinean, A.M., Denholm, I., Millar, N.S., Nauen, R. and Williamson, M.S. (2010). Characterisation of imidacloprid resistance mechanisms in the brown planthopper, NilaparvatalugensStål. (Hemiptera: Delphacidae). PesticBiochem Physiol., 97, 129-132

Riveron, J.M., Irving, H., Ndula, M., Barnes, K.G. and Ibrahim, S.S. (2013). Directionally selected cytochrome P450 alleles are driving the spread of pyrethroid resistance in the major malaria vector Anopheles funestus. Proc. Natl. Acad. Sci., USA, 110, 1252-1257

UNICEF (2024). Malaria: Monitoring the situation of children and women. https://data.unicef.org/topic/child-health/malaria/ [Accessed 10/2/2024]

Vatandoost, H., Ezeddinloo, L., Malivia, A.M. and Mobedi, E. (2004). Enhanced tolerance of house mosquito to different insecticides due to agriculture and household pesticides in sewage system of Tehran, Iran. Iranian J. Env. Health Sci Eng., 1,42-45

Verra, F., Angheben, A., Martello, E., Giorli, G., Perandin, F. and Bisoffi Z. (2018). A systematic review of transfusion-transmitted malaria in non-endemic areas. Malar. J., 17, 36. https://doi.org/10.1186/s12936-018-2181-0

Vulule, J.M., Beach, R.F., Atieli, F.K., McAllister, J. and Brogdon, W. (1999). Elevated oxidase and esterase levels associated with permethrin tolerance in anopheles gambiae from kenyan villages using permethrin- impregnated nets. Med. Vet. Entomol., 1, 239–244.

World Health Organization (WHO) (2015). Question and Answer on the Global Plan for Insecticide Resistance Management in Malaria Vector. http://www.who.int/malaria/media/insecticide_resistance_management_qa/en/ [Accessed 11/2/2024]

World Health Organization (WHO) (2018). World Malaria Report. Geneva, Switzerland: WHO Press. https://www.who.int/publications/i/item/9789241565653 [Accessed 11/2/2024]

World Health Organization (WHO) (2022). World Malaria Report. 2022. World Health Organization, Geneva, Switzerland. https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2022 [Accessed 14/2/2024]

World Health Organization (WHO) (2014). Fact Sheet Number 94, WHO, Geneva, 2014. http://www.who.int/mediacentre/factsheets/fs094/en/ [Accessed 15/2/2024]

Yadouleton, A.W., Padonou, G., Asidi, A., Moiroux, N., Bio-Banganna, S., Corbel, V., N'guessan, R., Gbenou, D., Yacoubou, I., Gazard, K and Akogbeto, M.C. (2010). Insecticide resistance status in Anopheles gambiae in southern Benin. Malar J., 9, 83. https://doi.org/10.1186/1475-2875-9-83

Published
2024-06-30
How to Cite
AdesoyeO. A., AdeogunA. O., OyeniyiT. A., OlagundoyeO. E., IzekorR. T., AdetunjiO. O., BabalolaA. S., AkinseteI. O., AdeniyiK. A., Akinleye5. A., AdediranA. D., IsaacC., AwololaS. T., & AndeA. T. (2024). BIOLOGICAL FITNESS COSTS OF GLUTATHIONE-S-TRANSFERASE (GST)-MEDIATED PERMETHRIN RESISTANCE IN ANOPHELES GAMBIAE GILES (DIPTERA: CULICIDAE). FUDMA JOURNAL OF SCIENCES, 8(3), 539 - 545. https://doi.org/10.33003/fjs-2024-0803-2602