INTEGRATING ARTIFICIAL INTELLIGENCE AND MATHEMATICAL MODELS FOR PREDICTIVE MAINTENANCE IN INDUSTRIAL SYSTEMS
Abstract
Predictive maintenance is a critical task for ensuring the reliability and efficiency of industrial systems. The integration of artificial intelligence (AI) and mathematical models has shown great potential in improving the accuracy and efficiency of predictive maintenance. This study provides an overview of the different types of mathematical models used for predictive maintenance, including physics-based, data-driven, and hybrid models. The study also discusses how AI techniques, such as machine learning and deep learning, can be used to enhance the accuracy and efficiency of predictive maintenance models. Additionally, the article highlights some of the challenges and limitations of integrating AI and mathematical models for predictive maintenance in industrial systems. Finally, this study provides a case study to demonstrate the practical application of the integrated approach for predictive maintenance in an industrial setting. This article aims to provide a comprehensive overview of the state-of-the-art in integrating AI and mathematical models for predictive maintenance and to provide guidance for researchers and practitioners working in this field.
References
Aderibigbe, F.M. and Apanapudor, J.S) . (2014aOn the Extended Conjugate Gradient Method (ECGM) Algorithm for Discrete Optimal Control Problems and some of ts features, IOSR Journal of Mathematics (IOSR-JM), Vol. 10(3)(version IV), pp. 16 – 22 DOI: https://doi.org/10.9790/5728-10341622
Ahad, N.A., Apanapudor, J.S. and Arunaye, F.I.(2021): Robust MULtivariate Correlation Techniques: A Confirmation Analysis using COVID-19 Data Set, Pertanika Journal of Science and Technology, Vol. 29(2), pp. 999 - 1015. DOI: https://doi.org/10.47836/pjst.29.2.16
Apanapudor, J.S.and Aderibigbe, F.M. (2015): Computing Techniques for the Conjugate Search Directions of the Bouhaya, A., (2021). A Review of Artificial Intelligence Techniques for Predictive Maintenance in Industry. Journal of Maintenance Engineering, 6(2), 117–138. https://doi.org/10.29252/jme.6.2.117
Chen, M., & Chen, Z. (2018). Data-Driven Predictive Maintenance: A Survey. Journal of Manufacturing Systems, 48, 144–156. https://doi.org/10.1016/j.jmsy.2018.03.003 DOI: https://doi.org/10.1016/j.jmsy.2018.03.003
Ge, M., & Liu, Y. (2021). A Comprehensive Review of Data-Driven Maintenance. IEEE Transactions on Reliability, 70(2), 932–953. https://doi.org/10.1109/TR.2021.3072278
Grieves, M., & Vickers, V. (2017). Digital Twin: Mitigating Unpredictable, Undesirable Emergent Behavior in Complex Systems. ScienceDirect, 121(3), 234–245. https://doi.org/10.1007/978-3-319-38756-7_4 DOI: https://doi.org/10.1007/978-3-319-38756-7_4
Huang, W., (2018). Fault Diagnosis of Bearings Based on an Improved SVM Algorithm. Jixie Gongcheng Xuebao, 54(9), 101–108. https://doi.org/10.3901/JME.2018.09.101
Iweobodo, D.C., Njoseh, I.N. and Apanapudor, J.S.(2024): An Overview of Iweobodo-Mamadu-Njoseh Wavelet and its steps in solving Time Fractional Advection-Diffussion Problems, Asian Research Journal of Mathematics, Vol. 20(3), pp.59 - 67. DOI: https://doi.org/10.9734/arjom/2024/v20i3791
Izevbizua, O. and Apanapudor, J.S.(2019): Implementing Fries model for the fixed lifetime Inventory System, OPSEARCH, https://doi.org/10.1007/s12597-019-00403-1 DOI: https://doi.org/10.1007/s12597-019-00403-1
Jardine, A. K. S., Lin, D., & Banjevic, D. (2006). A review on machinery diagnostics and prognostics implementing condition-based maintenance.mMechanical Systems and Signal Processing, 20(7), 1483–1510. https://doi.org/10.1016/j.ymssp.2005.09.012 DOI: https://doi.org/10.1016/j.ymssp.2005.09.012
Khalil, H., (2020). Physics-Based Modelling for Predictive Maintenance of Industrial Machines: A Review. Journal of Quality in Maintenance Engineering, 26(2), 250–268. https://doi.org/10.1108/JQME-07-2019-0076
Kohli, R., & Gupta, A. (2020). IoT and Edge Computing for Predictive Maintenance in Industry 4.0. International Journal of Research and Analytical Reviews, 7(2), 1181–1188. https://doi.org/10.35541/ijrar.2020.v7.i2.172
Li, Y., (2021). A Review of Artificial Intelligence Techniques for Predictive Maintenance in Manufacturing. Journal of Intelligent Manufacturing, 32(7), 1593–1610. https://doi.org/10.1007/s10845-021-01721-9
Liu, Y., (2020). A Comparison of Machine Learning Algorithms for Predictive Maintenance. Journal of Manufacturing Systems, 57, 47–56. https://doi.org/10.1016/j.jmsy.2020.05.002 DOI: https://doi.org/10.1016/j.jmsy.2020.05.002
Liu, Z., (2021). Predictive Maintenance for CNC Machine Tools Using Deep Belief Networks. Journal of Manufacturing Systems, 59, 171–182. https://doi.org/10.1016/j.jmsy.2021.01.013 DOI: https://doi.org/10.1016/j.jmsy.2021.01.013
Medjaher, K., (2021). Artificial Intelligence for Predictive Maintenance: A Review of Tools and Techniques. Journal of Manufacturing Systems, 54, 1–10. https://doi.org/10.1016/j.jmsy.2020.06.012
Medjaher, K., (2017). Intelligent Maintenance Systems: A Review. Journal of Quality in Maintenance Engineering, 23(2), 224–244. https://doi.org/10.1108/JQME-05-2016-0047
Ngo, C. B., & Zhang, Y. (•••). A Survey on Remaining Useful Life Prediction Methods for Industrial Equipment [pp.]. IEEE Transactions on Industrial Informatics, 10(4), •••.
Okposo, N.I., Addai, E., Apanapudor, J.S. and Gomez-Aguilar, J.F.(2023): A study of Monkey-pox transmission model within the scope of fractal -fractional derivative with power-law kernel, the European Physical Journal Plus, https://doi.org/eqjp/s13360-023-04334-1 DOI: https://doi.org/10.1140/epjp/s13360-023-04334-1
Okwonu, F.Z.,Ahad,N.A. , Apanapudor, J.S. and Arunaye, F.I.(2023): Chi-square and Adjusted Standardised Residual Analysis, ASM Science Journal, Vol. 18, https://doi.org/10.32802/asmscj.2023.985 DOI: https://doi.org/10.32802/asmscj.2023.985
Okwonu, F.Z., Ahad, N.A.,Okoloko, I. E., Apanapudor, J.S. and Arunaye, F.I.(2022):Robust Hybrid Cliassification Methods and Applications, Pertanika Journal of Science and Technology, Vol.10(4), pp. 2831 - 2850 DOI: https://doi.org/10.47836/pjst.30.4.29
Parvez, M., (2021). Predictive Maintenance for Gas Turbine Engines Using Deep Learning Techniques. Journal of Engineering for Gas Turbines and Power, 143(8), 081011. https://doi.org/10.1115/1.4050389 DOI: https://doi.org/10.1115/1.4050389
Qiu, H., Lee, J., & Lin, J. (2007). Degradation assessment and remaining useful life prediction of machinery based on hidden Markov model and support vector regression. Mechanical Systems and Signal Processing, 21(1), 244–257.
Rathore, S. S., (2020). A Comprehensive Review of Predictive Maintenance Techniques: Mathematical Models, Deep Learning, and Fuzzy Logic [Sep]. Journal of Cleaner Production, 288, 125574.
Saxena, A., Goebel, K., Simon, D., and Eklund, N. (2008). Damage propagation modelling for aircraft engine run-to-failure simulation. In Proceedings of the International Conference on Prognostics and Health Management (PHM08), Denver, CO. https://doi.org/10.1109/PHM.2008.4711414 DOI: https://doi.org/10.1109/PHM.2008.4711414
Singh, M., (2020). An Overview of Artificial Intelligence Techniques for Predictive Maintenance. Journal of Manufacturing Systems, 57, 157–172. https://doi.org/10.1016/j.jmsy.2020.06.012 DOI: https://doi.org/10.1016/j.jmsy.2020.06.012
Sun, J., (2020). A Review of Mathematical Models for Predictive Maintenance in the Process Industry. Journal of Process Control, 80, 172–184. https://doi.org/10.1016/j.jprocont.2019.12.008 DOI: https://doi.org/10.1016/j.jprocont.2019.12.008
Tandon, P., & Choudhary, A. (2009). A Review of Vibration and Acoustic Measurement Methods for the Detection of Defects in Rolling Element Bearings. Tribology International, 32(8), 469–480. https://doi.org/10.1016/S0301-679X(99)00077-8 DOI: https://doi.org/10.1016/S0301-679X(99)00077-8
Wang, H., & Hu, Y. (2015). A Survey of Fault Diagnosis and Fault-Tolerant Techniques – Part I: Fault Diagnosis with Model-Based and Signal-Based Approaches. IEEE Transactions on Industrial Electronics, 62(6), 3757–3767. https://doi.org/10.1109/TIE.2015.2417501 DOI: https://doi.org/10.1109/TIE.2015.2417501
Wang, J., (2022). Artificial Intelligence Techniques for Predictive Maintenance: A Comprehensive Review. Journal of Cleaner Production, 318, 128283. https://doi.org/10.1016/j.jclepro.2021.128283 DOI: https://doi.org/10.1016/j.jclepro.2021.128283
Wang, X., (2019). Mathematical Modeling and Optimization of Maintenance Operations for Manufacturing Systems. International Journal of Production Research, 57(14), 4518–4535. https://doi.org/10.1080/00207543.2019.1565329
Wang, Y., (2019). An Improved BP Neural Network Model for Predictive Maintenance of Hydraulic Systems. Sensors (Basel), 19(22), 4842. https://doi.org/10.3390/s19224842 DOI: https://doi.org/10.3390/s19224842
World Economic Forum (WEF), "The Future of Jobs Report 2020," (2020), [Online]. Available: https://www.weforum.org/reports/the-future-of-jobs-report-2020
Yang, S. C., (2019). An Artificial Intelligence-Enabled Predictive Maintenance Method for Process Control Valves. Applied Sciences (Basel, Switzerland), 9(5), 932. https://doi.org/10.3390/app9050932 DOI: https://doi.org/10.3390/app9050932
Yu, H., & Li, X. (2017). An Industrial Big Data Platform for Proactive and Predictive Maintenance. IEEE Transactions on Industrial Informatics, 13(4), 1891–1901. https://doi.org/10.1109/TII.2017.2706544
Copyright (c) 2024 FUDMA JOURNAL OF SCIENCES
This work is licensed under a Creative Commons Attribution 4.0 International License.
FUDMA Journal of Sciences