ANALYSIS OF FACTORS INFLUENCING PASSENGERS TRAFFIC IN THE ABUJA-KADUNA TRAIN SERVICE (AKTS)
DOI:
https://doi.org/10.33003/fjs-2024-0803-2590Keywords:
Railway Corporation, Service Delivery, Train Operations, Performance Quality, Public TransportAbstract
This paper analysed passengers’ traffic of the Abuja-Kaduna train service (AKTS). The AKTS is gaining recognition and increasing patronage of high-profile individuals, private car owners, and other passengers plying the Abuja-Kaduna road for various reasons (Suleiman, 2023; Suleiman, 2021). Data used for this study was obtained through both primary and secondary sources of data. The primary data involved the administration of 45 questionnaires to the railway staff in charge of the AKTS operation. While secondary data was obtained from the Nigerian Railway Corporation (NRC). The secondary data cover operational data for passengers transported by the AKTS between 2016-2021. The study employed the use of both descriptive and inferential statistical methods of data analysis. The findings of the descriptive analysis revealed that 2019 recorded the highest passengers traffic, while 2016 recorded the lowest. As for monthly traffic, December recorded the highest while May recorded the lowest. The result of one-way between-groups analysis revealed that there was a statistically significant difference at the p < .05 level in the yearly traffic.
References
Akpootu, D. O., & Abdullahi, Z. (2022). Development of Sunshine Based Models for Estimating Global Solar Radiation over Kano and Ikeja, Nigeria. FUDMA Journal of Sciences, 6(3), 290-300. https://doi.org/10.33003/fjs-2022- 0603-1001
Akpootu, D. O., & Iliyasu, M. I. (2015a). A comparative study of some meteorological parameters for predicting global solar radiation in Kano, Nigeria based on three variable correlations. Advances in Physics Theories and Applications, 49, 1–9.
Akpootu, D. O., & Iliyasu, M. I. (2015b). The impact of some meteorological variables on the estimation of global solar radiation in Kano, North Western, Nigeria. Journal of Natural Sciences Research, 5(22), 1–13.
Akpootu, D. O., & Momoh, M. (2014). Empirical model for estimating global solar radiation in Makurdi, Benue State, North Central Nigeria. Paper presented at the 36th Annual Nigerian Institute of Physics, National Conference, University of Uyo, Nigeria. 26th -29th May, 2014.
Akpootu, D. O., & Mustapha, W. (2015). Estimation of Diffuse Solar Radiation for Yola, Adamawa State, North-Eastern Nigeria. International Research Journal of Engineering and Technology, 2(8), 77-82.
Akpootu, D. O., & Sulu, H. T. (2015). A comparative study of various sunshine-based models for estimating global solar radiation in Zaria, North-Western, Nigeria. International Journal of Technology Enhancements and Emerging Engineering Research, 3(12), 1–5.
Akpootu, D. O., Alaiyemola, S. R., Abdulsalam, M. K., Bello, G., Umar, M., Aruna, S., Isah, A. K., Aminu, Z., Abdullahi, Z., & Badmus, T. O. (2023). Sunshine and Temperature Based Models for Estimating Global Solar Radiation in Maiduguri, Nigeria. Saudi Journal of Engineering and Technology, 8(5), 82-90. https://doi.org/10.36348/sjet.2023.v08i05.001
Akpootu, D. O., Iliyasu, M. I., Mustapha, W & Aruna, S. (2015). Developing empirical models for predicting diffuse solar radiation over Yola, Adamawa State, North-Eastern, Nigeria. International Research Journal of Engineering and Technology (IRJET) Volume 02 (08): 113 -121
Akpootu, D. O., Tijjani, B. I., & Gana, U. M. (2019a). Empirical models for predicting global solar radiation using meteorological parameters for Sokoto, Nigeria. International Journal of Physical Research, 7(2), 48–60. https://doi.org/10.14419/ijpr.v7i2.29160
Akpootu, D. O., Tijjani, B. I., & Gana, U. M. (2019b). Sunshine and temperature-dependent models for estimating global solar radiation across the Guinea savannah climatic zone of Nigeria. American Journal of Physics and Applications, 7(5), 125-135. https://doi.org/10.11648/j.ajpa.20190705.15
Akpootu, D. O., Tijjani, B. I., & Gana, U. M. (2019c). New temperature-dependent models for estimating global solar radiation across the midland climatic zone of Nigeria. International Journal of Physical Research, 7(2), 70–80. https://doi.org/10.14419/ijpr.v7i2.29214
Akpootu, D. O., Tijjani, B. I., & Gana, U. M. (2019d). New temperature-dependent models for estimating global solar radiation across the coastal climatic zone of Nigeria. International Journal of Advances in Scientific Research and Engineering (IJASRE), 5(9), 126–141. https://doi.org/10.31695/IJASRE.2019.33523
Almorox, J., Benito, M., & Hontoria, C. (2005). Estimation of monthly Ångström-Prescott equation coefficients from measured daily data in Toledo, Spain. Renewable Energy, 30, 931-936.
Benchrifa, M., Essalhi, H., Tadili, R., Bargach, M. N., & Mechaqrane, A. (2019). Development of a daily databank of solar radiation components for Moroccan territory. International Journal of Photoenergy, https://doi.org/10.1155/2019/6067539
Bevington P. R. (1969) Data Reduction and Error Analysis for the Physical Sciences, first Edition McGraw Hill Book Co., New York.
Burari, W.F., and Sambo, S.A. (2001).“Model for the Prediction of Global Solar Radiation for Bauchi Using Meteorological data”.Renewable Energy. 9(1&2): pp 12- 33
Chen, R., Ersi, K., Yang, J., Lu, S., & Zhao, W. (2004). Validation of five global radiation models with measured daily data in China. Energy Conversion and Management, 45, 1759-1769.
Despotovic, M., Nedic, V., Despotovic, D., & Cvetanovic, S. (2016). Evaluation of empirical models for predicting monthly mean horizontal diffuse solar radiation. Renewable and Sustainable Energy Reviews, 56, 246–260. doi:10.1016/j.rser.2015.11.058
Duffie J.A. and W.A. Beckman. (2013). Solar Engineering of Thermal Processes, 4th edition. John Wiley & Sons, Hoboken, New Jersey. Pages 12-133.
Gana, N. N., & Akpootu, D. O. (2013a). Ångström type empirical correlation for estimating global solar radiation in North-Eastern Nigeria. The International Journal of Engineering and Science, 2(11), 58-78.
Gana, N. N., & Akpootu, D. O. (2013b). Estimation of global solar radiation using four sunshine-based models in Kebbi, North-Western, Nigeria. Pelagia Research Library, 4(5), 409-421.
Halouani, N., Nguyen, C. T., & Vo-Ngoc, D. (1993). Calculation of monthly average solar radiation on horizontal surfaces using daily hours of bright sunshine. Solar Energy, 50, 247-248.
Hussain M., Rahman L., and Rahman M.M., (1999). Techniques to obtain improved predictions of global radiation from sunshine duration. Renewable Energy 18: 263-275.
Iqbal, M. (1983). An Introduction to Solar Radiation. Academic Press
Li, H., Ma, W., Lian, Y., & Wang, X. (2010). Estimating daily global solar radiation by day of year in China. Applied Energy, 87(10), 3011–3017. https://doi.org/10.1016/j.apenergy.2010.03.028
Loutfi, H., Bernatchou, A., Raoui, Y., & Tadili, R. (2017). Learning processes to predict the hourly global, direct, and diffuse solar irradiance from daily global radiation with Artificial Neural Networks. International Journal of Photoenergy, https://doi.org/10.1155/2017/4025283
Merges, H. O., Ertekin, C., & Sonmete, M. H. (2006). Evaluation of global solar radiation models for Konya, Turkey. Energy Conversion and Management, 47, 3149-3173
Olatona, G. I. (2018). Estimating global solar radiation from routine meteorological parameters over a tropical city (7.23° N; 3.52° E) using quadratic models. Annals of the West University of Timisoara-Physics, 60(1), 45-55. https://doi.org/10.2478/awutp-2018-0005
Olomiyesan, B. M., Akpootu, D. O., Oyedum, D. O., Olubusade, J. E., & Adebunmi, S. O. (2021). Evaluation of global solar radiation models performance using global performance indicator (GPI): A case study of Ado Ekiti, South West, Nigeria. Paper presented at the 43rd Annual Nigerian Institute of Physics, National Conference, Nnamdi Azikiwe University, Awka, Anambra State, May 26-29.
Osinowo, A. A., Okogbue, E. C., Ogungbenro, S. B., & Fashanu, O. (2015). Analysis of Global Solar Irradiance over Climatic Zones in Nigeria for Solar Energy Applications. Journal of Solar Energy, https://doi.org/10.1155/2015/819307
Rocha, P.A.C., Fernandes, J.L., Modolo, A.B., Lima, R.J.P., Da Silva, M.E.V. and Bezerra C.A. D. (2019). Estimation of daily, weekly and monthly global solar radiation using ANNs and a long data set: a case study of Fortaleza, in Brazilian Northeast region. International Journal of Energy and Environmental Engineering, 10, 319–334. https://doi.org/10.1007/s40095-019-0313-0.
Sa’id, R. S., Akor, S. I. and Gana, U.M. (2019). Empirical models for estimation of Global Solar Radiation using the monthly average daily sunshine hours data for Makurdi, Benue state. Bayero Journal of Pure and Applied Sciences, 12(1): 32 – 39 http://dx.doi.org/10.4314/bajopas.v12i1.6
Sabziparvar, A. A. (2009). A simple formula for estimating global solar radiation in central arid deserts of Iran. Renewable Energy, 33(5), 1002–1010. https://doi.org/10.1016/j.renene.2007.06.015
Sabzpooshani M. and K. Mohammadi. (2014). Establishing new empirical models for predicting monthly mean horizontal diffuse solar radiation in city of Isfahan, Iran. Energy 69: 571-577. DOI:10.1016/j.energy.2014.03.051
Saidur, R., Masjuki, H. H., & Hassanuzzaman, M. (2009). Performance of an improved solar car ventilator. International Journal of Mechanical and Materials Engineering, 4(1), 24–34.
Salifu, S. I., Hamza, B. S., Akpootu, D. O., Kola, T. A. and Yusuf, A. (2024). New Models For Estimation Of Diffuse Solar Radiation Using Meteorological Parameters For Benin, Nigeria. FUDMA Journal of Sciences (FJS) Vol. 8 No. 1, pp 155 - 166 https://doi.org/10.33003/fjs-2024-0801-2259
Torres J., De Blas M., García A. and De Francisco, A., (2010). Comparative study of various models in estimating hourly diffuse solar irradiance. Renewable Energy 35: 1325-1332. 10.1016/j.renene.2009.11.025
Trenberth, K.E., Jones, P.D., Ambenje, P., Bojariu, R., Easterling, D., Klein Tank, A., Parker, D., Rahimzadeh, F., Renwick, J.A., Rusticucci, M., Soden, B., & Zhai, P. (2007). Observations: Surface and Atmospheric Climate Change. In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, & H.L. Miller (Eds.), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 235-336). Cambridge University Press.
Wang, L.; Kisi, O.; Zounemat-Kermani, M.; Salazar, G.A.; Zhu, Z.; Gong, W. (2016). Solar radiation prediction using different techniques: Model evaluation and comparison. Renew. Sustain. Energy Rev. 61, 384–397. https://doi.org/10.1016/j.rser.2016.04.024
Yeom, J.-M., Seo, Y.-K., Kim, D.-S., & Han, K.-S. (2016). Solar radiation received by slopes using COMS imagery, a physically based radiation model, and GLOBE. Journal of Sensors, http://dx.doi.org/10.1155/2016/4834579
Yoshida, S., Ueno, S., Kataoka, N., Takakura, H., & Minemoto, T. (2013). Estimation of global tilted irradiance and output energy using meteorological data and performance of photovoltaic modules. Solar Energy, 93, 90–99. doi:10.1016/j.solener.2013.04.001
Zekai, S. (2008). Solar Energy Fundamentals and Modeling Techniques: Atmosphere, Environment, Climate Change, and Renewable Energy (1st ed.). Springer, London.
Zhang, J., Zhao, L., Deng, S., Xu, W., & Zhang, Y. (2017). A critical review of the models used to estimate solar radiation. Renewable and Sustainable Energy Reviews, 70, 314–329. 10.1016/j.rser.2016.11.124
Published
How to Cite
Issue
Section
FUDMA Journal of Sciences